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Abstract— We present a novel Augmented Reality (AR) ap-
proach, through Microsoft HoloLens, to address the challenging
problems of diagnosing, teaching, and patching interpretable
knowledge of a robot. A Temporal And-Or graph (T-AOG)
of opening bottles is learned from human demonstration and
programmed to the robot. This representation yields a hier-
archical structure that captures the compositional nature of
the given task, which is highly interpretable for the users. By
visualizing the knowledge structure represented by a T-AOG
and the decision making process by parsing the T-AOG, the
user can intuitively understand what the robot knows, supervise
the robot’s action planner, and monitor visually latent robot
states (e.g., the force exerted during interactions). Given a
new task, through such comprehensive visualizations of robot’s
inner functioning, users can quickly identify the reasons of
failures, interactively teach the robot with a new action, and
patch it to the current knowledge structure. In this way, the
robot is capable of solving similar but new tasks only through
minor modifications provided by the users interactively. This
process demonstrates the interpretability of our knowledge
representation and the effectiveness of the AR interface.

I. INTRODUCTION

The ever-growing vast amount of data and rapid-increasing
computing power have enabled a data-driven machine learn-
ing paradigm in the past decade. Using Deep Neural Net-
works (DNNs) [1], the performance of machine learning
methods has reached a remarkable level in some specific
tasks, even arguably better than human, e.g., control [2],
[3], grasping [4], [5], object recognition [6], [7], learning
from demonstration [8], and playing the game of go [9] and
poker [10], [11]. However, despite these recent encouraging
progress, DNN-based methods have well-known limitations;
one of these limitations is the lack of interpretability of the
knowledge representation, especially about how and why a
decision is made, which plays a vital role in the scenarios
where robots work alongside humans.

Meanwhile, contextual adaptation models using And-Or-
Graph (AOG) and Probabilistic Programming start to demon-
strate the interpretability using small amount of training
data in robot learning [12], [13], recognition [14], [15],
reconstruction [16], social interactions [17], causal reason-
ing [18], [19], playing video games [20], and human-level
concept learning [21]. Although these types of models have
been identified by DARPA as the representative models in
the third wave of artificial intelligence [22], a natural and
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Fig. 1: System architecture. Given a knowledge represented
by a T-AOG of opening conventional bottles, the robot
tries to open unseen medicine bottles with safety lock. The
proposed AR interface can visualize the inner functioning
of the robot during action executions. Thus, the user can
understand the knowledge structure inside the robot’s mind,
directly oversee the entire decision making process through
HoloLens in real-time, and finally interactively correct the
missing action (push) to open a medicine bottle successfully.

convenient way to teach and interact with a robot to acquire
and accumulate such interpretable knowledge is still missing.

In this paper, we propose an augmented reality (AR)
interface, through Microsoft HoloLens, to interact with a Re-
think Baxter robot for teaching and patching its interpretable
knowledge represented by the AOGs. In the experiments, we
demonstrate the proposed AR interface develops interpreta-
tions at three different levels:

1) Knowledge structure by compositional models. We
take an example of a robot opening various medicine
bottles, and represent the robot’s knowledge structure
using a Temporal And-Or Graph (T-AOG) [14]. The T-
AOG encodes a repertoire of a successful action sequence
for a robot to open medicine bottles. Visualizing through
the holographical interface, the state of robot represented
by a T-AOG can be naturally inquired through gesture
control (see Fig. 7a).

2) Interpretable decision making. Unlike a teacher can
usually query students to verify whether they obtain the
knowledge structure correctly, it is nontrivial for users to
check and understand robots’ inner functioning, making it
difficult for users to diagnose the robot decision-making
process. By visualizing the decision-making process on
top of T-AOG through the holographical interface, infor-
mation of interests can be better associate to the actual
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robot and the actual scene, thus help to gain insight about
how a robot behaves and why it behaves in a certain way.

3) Interactive knowledge structure patching. Once the
users find out the reason why a certain action sequence
leads to a failure, the users can interactively patch the
knowledge structure represented by the T-AOG: adding a
missing node, deleting a redundant node, and updating a
node representing a wrong action.

A. Related Work

Explanation Interfaces has a long and rich history in
artificial intelligence. The goal of explanation interfaces
is to generate explanations regarding particular predictions
and decisions automatically so that users can diagnose and
correct the wrong behaviors. Such types of systems have
been deployed in a wide range of applications, e.g., medi-
cal diagnoses [23], understanding agent’s action [24], [25],
activity recognition [26], robot control [27], and simulator
for training in virtual environment [28], [29]. By adopting
HoloLens, the most advanced commercial AR product to
date, we hope to provide a fully mobile yet powerful expla-
nation interface with modern visualizations, faster diagnoses,
and more natural interactions.

Augmented Reality (AR) can overlay the symbolic and
semantic information of a robot either to a simulator [30],
[31], [32] or to a real-world scene. In particular, [33], [34],
[35], [36] conveyed robots intention (e.g., movements and
trajectory) through projecting visual aids. Krückel et al. [37]
transferred robot’s camera view to user’s head-mounted
display in order to achieve better teleoperation. In other
cases, researchers deploy AR to display robot’s states to
help users gain insight of the multi-robot systems [38], [39].
Compared to the present study, this line of work requires a
fixed camera and/or projector, limiting the mobility of both
human and robots.

AR is also proven to be effective in interacting with
robots. Brageul et al. [40] incorporated AR techniques to
develop a user interface to program a robot. Zaeh et al. [41]
used a laser pointer with AR to update robot’s trajectory.
Kuriya et al. [42] introduced infrared marker projection and
detection pipeline for robot navigation. Huy et al. [43] pro-
posed a comprehensive system that consists of laser-writer,
see-through head-mounted display, and a hand-held device
to control a robot. Anderson et al. [44] enabled a robot to
project its task information, e.g., welding points, to the task
space for user verification and re-programming. Compared to
the present study, prior efforts mainly focused on providing
one-time guidance, but not for teaching and accumulating
interpretable knowledge for future similar tasks.

Interpretability of a robot’s planning and knowledge
representation determines whether users can effectively un-
derstand, verify, diagnose and agree with robot’s behaviors.
Past work in robot’s interpretable representation can be
summarized as two types. The first kind of representation
utilizes Markov Decision Processes (MDP): it depicts the
state transitioning by performing an action associated with a
reward. For instance, Feng et al. [45] helped operator reason
about system violations by defining a notion of structured

probabilistic counterexamples. Hayes and Shah [46] used
MDP to generate a verbal explanation of robot behaviors.
However, the decision rules obtained by the MDP is not
readily interpretable as it lacks long-term dependencies.

The second type is the graphical models, including Hierar-
chical Task Network (HTN) that is widely used in robotics,
and And-OR Graph (AOG) rooted from the community of
knowledge representation. This type of models symbolically
abstracts each motion primitive. It has been utilized in cloth-
folding with causal relation [12], human-robot collabora-
tions [47], learning social interactions [17], and complex
manipulation for opening medicine bottles [48].

Learning from Demonstration (LfD) is a vast field
with a rich history [8]. In the present study, using vision-
based algorithms, the robot can learn the action sequence
of opening bottles from the demonstrations. Given demon-
strations of opening a medicine bottle with safety lock, the
additional action “push” is not directly perceivable from
human demonstrations using vision sensor alone, making the
demonstrations identical to the ones for conventional bottles,
resulting in the failure of opening the lid. In such cases,
the users can use the proposed AR interface to interactively
diagnose the action sequence and correct the missing action,
leading to a successful opening.

B. Contribution

This paper makes the following three contributions:
1) We introduce a new AR interface based on the state-

of-the-art head-mounted display, Microsoft HoloLens,
providing users a much more natural way to interact with
a robot. In addition to visualizing robot’s states, inten-
tions, or controlling robots, we further visualize robot’s
knowledge representation so that users can understand
why and how a robot will behave.

2) In contrast to using additional force sensing [49] to
perceive the visually hidden force [48], the present study
provides an intuitive way for users to augment the visually
imperceptible knowledge on top of the learned action
sequence represented by a T-AOG. In this way, the AR
interface affords a much more effectively diagnose and
knowledge patching process. Furthermore, it often has
a much lower cost, as users do not need to build any
additional sensors or apparatus to demonstrate the tasks.

3) We build a communication interface between the
HoloLens platform and ROS, and are publicly available
online 1. It allows a variety of interchangeable messages,
which we hope would ease the development difficulties
across commonly used platforms.

C. Overview

The remainder of the paper is organized as follows. Sec-
tion II outlines the AOG representation and the architecture
of AR system. Learning knowledge representation of opening
bottles from human demonstration is described in Section III.
In Section IV, we showcase some experiment results, in-
cluding the visualization of the interpretable knowledge, the

1https://github.com/xiaozhuchacha/AOG_AR
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Fig. 2: Illustration of a T-AOG. The T-AOG is a temporal
grammar in which the terminal nodes are motion primitives
of hand-object interactions.

decision-making process of the robot, and an example of
knowledge patching to update the robot’s knowledge for a
new task. We conclude and discuss the results in Section V.

II. METHODOLOGY

This section introduces the representation of knowledge
structure and describes the proposed AR system architecture.

A. Representation

We represent the action sequence to execute a task by a
structural grammar model, T-AOG (see Fig. 2). An AOG
is a directed graph which describes a stochastic context-free
grammar (SCFG), providing a hierarchical and compositional
representation for entities. Formally, an AOG is defined as a
five-tuple G=(S,V,R,P,Σ). Specifically,
• S is a start symbol that represents an event category (e.g.,

opening a bottle).
• V is a set of nodes including the non-terminal nodes V NT

and terminal nodes V T : V =V NT ∪V T . The non-terminal
nodes can be divided into And nodes and Or nodes: V NT =
V And∪V Or. An And-node represents the compositional
relations: a node v is an And-node if the entity represented
by v can be decomposed into multiple parts, which are
represented by its child nodes. An Or-node indicates the
alternative configuration among its child nodes: a node v
is an Or-node if the entity represented by v has multiple
mutually exclusive configurations represented by its child
nodes. The terminal nodes V T are the entities that cannot
be further decomposed or have different configurations; it
represents the set of motion primitives that a human/robot
can perform (e.g., approaching, twisting).

• R= {r : α→ β} is a set of production rules that represent
the top-down sampling process from a parent node α to
its child nodes β .

• P : p(r)= p(β |α) is the probability associated with each
production rule.

• Σ is the language defined by the grammar, i.e., the set of
all valid sentences that can be generated by the grammar.
A parse tree is an instance of AOG, where for each Or-

node, one of the child nodes is selected. A temporal parse
tree pt of an event is a sub-graph of the T-AOG that captures
the temporal structure of the scenario. The terminal nodes of
pt form a valid sentence; in this case, terminal nodes are a
set of atomic actions for the robot to execute in a fixed order.

B. System Architecture

AR Headset: Using AR headset, both symbolic and
semantic information of the robot can be augmented on top
of the observed actual scenes, allowing users to gain better
situational awareness and insights of the robot’s status. In the
present work, we adopt the state-of-the-art AR head-mount
display HoloLens. Compared to other available AR headsets,
HoloLens is the first untethered AR head-mounted display
that allows the user to move freely in the space without
being constrained by any cable connections. Integrated with
32-bit Intel Atom processors, HoloLens provides a reliable
localization using IMU, four spatial-mapping cameras, and
a depth camera. Using Microsoft’s Holographic Processing
Unit, the users can realistically view the augmented contents.
Common interactions, such as gaze, hand gesture, and voice
control with Cortana, are integrated, making HoloLens the
most suitable device for the present study. The holograms
displayed on its screen are created using Unity3D game en-
gine, through which various visual effects can be introduced.

Robot Platform: We experiment the proposed AR
interface with a robot platform consists of a dual-armed 7-
DoF Baxter robot from Rethink Robotics mounted on a Data
Speed mobility base. The robot is equipped with a ReFlex
TackkTile gripper on the right wrist and a Robotiq S85
parallel gripper on the left. The entire system runs on Robot
Operating System (ROS), and arm motion planning is com-
puted using MoveIt!. This comprehensive research robotics
system has been proven suitable for many challenging tasks
in robotics researches [12], [17], [48].

Overall Framework: Fig. 1 illustrates the system
architecture of the proposed interface. A repertoire of robot
opening a conventional bottle (Bottle 1) with no safety lock
is taught to the robot through imitation learning. We visualize
its interpretable knowledge representation and a set of AR
elements that reveal the robot’s state and decision-making
process represented by a parse tree pt through the HoloLens.

Given a new scenario, i.e., to open several medicine
bottles (Bottle 2-4) that require pressing down the lid during
twisting, the robot is asked to execuate and open these
bottles. For such task, the critical actions involved (e.g.,
whether pressing down or not) are perceptually similar to
the actions of opening conventional bottles. Therefore, the
learned knowledge of opening a conventional bottle becomes
insufficient; without knowing the action of pressing down,
the sampled pt always leads to failures of opening medicine
bottles with safety lock.

Through the AR interface, users can quickly identify the
reasons for failures through HoloLens, interactively teach
the robot with a new action, and patch it to the knowledge
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Fig. 3: Average hand skeleton of 7 atomic actions. Approach:
move towards the lid. Grasp/Pinch: contact lid. Twist: rotate
along the unlock direction. Ungrasp: release lid. Move: rotate
to neutral position. Pull: pull the lid off the bottle.

structure represented by the T-AOG. In this way, the robot
is capable of solving similar but new tasks only through
minor modifications provided by the users interactively. This
process demonstrates the interpretability of our knowledge
representation and the effectiveness of the AR interface.

III. IMITATION LEARNING

This section briefly describes the pipeline for teaching a
robot to open conventional bottles through imitation learning.
We adopt the pipeline proposed by Edmonds et al. [48]. In
contrast, our work makes two differences: i) we capture pose
information of hand-object interactions with LeapMotion
sensor to avoid the use of a tactile glove [49] and Vicon,
ii) we apply a modified version of the ADIOS (automatic
distillation of structure) [50] to induce the temporal grammar
T-AOG of the task, yielding a more compact AOG model.

Human Data Collection: Twenty manipulations of
opening medicine bottles are collected using hand tracking
by LeapMotion sensor. The captured data is manually seg-
mented into sequences of atomic actions. Fig. 3 presents the
average hand skeleton of each atomic action, as well as the
description of these atomic actions. Note that two actions are
different during contacting the lid: Grasp refers to a grasping
with all fingertips contacting with the lid, whereas Pinch is
the action that only the tips of the thumb and the index finger
contact with the lid.

Grammar Induction: A T-AOG is induced from seg-
mented action sequences using a modified version of ADIOS
algorithm [50]. It results in a stochastic context-free grammar
with probabilistic Or-nodes (see Fig. 4). Given the learned
T-AOG, a parse tree pt =(a0, . . . ,aK) can be obtained by
decomposing all the And-nodes and selecting one branch at
each Or-node. The robot can execute pt by performing the
actions encoded by the terminal nodes in temporal order to
accomplish the task.

Mirroring Human Actions to Robot: We endow the
robot with a dictionary of atomic actions corresponding to the
human’s manipulative actions (see Fig. 3). Specifically, each
action is represented by the change of robot’s end-effector
pose or the open/close of the gripper. For instance, the robot
approaches the lid by moving to a new pose assuming the

Fig. 4: Learned AOG. The green and yellow nodes are And-
nodes and Or-nodes, respectively. The numbers on edges of
And-nodes indicates the temporal order of expansion. The
red edges indicates a possible parse tree. The action sequence
is approach grasp twist ungrasp move grasp twist pull.

relative pose of the lid is known, twists the lid by rotating
the gripper to the counter-clockwise direction, and moves the
lid is to rotate in the opposite direction.

IV. STATE VISUALIZATION AND KNOWLEDGE PATCHING

This section showcases the functionality and the effects
using the proposed AR interface: i) diagnosing the formerly
obscure robot inner functioning and knowledge structure
becomes possible through the visualization, and ii) the user
can teach new knowledge to the robot in novel scenarios by
patching the interpretable knowledge structure.

Notice that the following qualitative results are captured
in two ways. The first type of results is captured by a DSLR
camera seeing through the HoloLens. This is what a user
would see directly through the HoloLens, and it mimics the
first-person egocentric view with distortion, slightly worse
color contrast, and some blurs (Fig. 5a, 5b, 5d, and 6a) due to
limited field of view, the curvature of the lens, and reflectance
of HoloLens’ screen. The second type of results are captured
by the mixed reality capture feature of the HoloLens that
overlays the holograms to the image captured by HoloLens’s
PV camera (Fig. 5c, 5e, 6b, and 6c).

Although the second type of the images is of higher
quality, they are not exactly the same as what users would
see. Hence, we present the results in Fig. 5 and 6 in a
mixture format using two capturing methods to show the
actual realism that the HoloLens would afford to users in
real-world, whereas Fig. 7 to 10 use images captured only
by the second type to better illustrate the functionality and
the procedures of the proposed AR interface.

A. AR Interface

We developed a two-way communication bridge between
ROS and HoloLens to exchange various messages across
two platforms. From ROS to HoloLens, the bridge allows
the ROS topic messages generated by the robot to be
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(a) (b) (c) (d) (e)
Fig. 5: The AR interface. (a)(b)(d) are captured by a DSLR camera to reflect what the user would actually see through the
HoloLens. (c)(e) are captured directly by HoloLens to better illustrate the functionality and the procedures of the proposed
AR interface. (a) Users can use gesture control to turn on or off sensory information that overlays on top of actual robot
or scene, as well as to control the robot. For instance, the camera icon is designed to turn on or off the Kinect camera;
the gripper icon is designed to open or close the left gripper interactively. (b)(c) TF frames of robot’s joints are displayed
according to the tracked AR tag. (d)(e) The frames remain in place although the AR tag is lost during tracking later.

simultaneously transmitted and displayed in both ROS and
HoloLens. The types of ROS messages include images, TF,
force data, etc.. Meanwhile, from HoloLens to ROS, various
kinds of visual effects displayed as holograms in HoloLens
using Unity3D game engine can be generated to represent the
corresponding ROS topic messages. Examples range from
simple shapes to complex objects and images, compatible
with various robot platforms and other ROS packages.

We first use HoloLens to track an AR tag displayed on
robot’s screen and obtain the relative pose from the user
to the robot. This step registers the robot’s pose relative to
user’s own coordinate system, and the information of interest
is overlaid at the corresponding reference frames. Using
gesture control, the user can easily turn on or off the sensory
information, as well as control the robot (see Fig. 5a). In
addition, the robot’s TF tree can be overlaid on top of each
joint, visualizing the join pose (see Fig. 5b and 5c). Even
when the users move around to the location where the AR tag
is not within the field-of-view, all the overlaid information is
still anchored to the designed locations in 3D, e.g., viewing
the TF tree from the back of the robot (see Fig. 5d and 5e).
Such ability dramatically enhances the mobility of the user
and the robot, and provides a much more natural interactions.

By default, if the sensory information is turned on, the
panel showing the information will be displayed next to
the actual sensor in 3D scene (see Fig. 6a and 6b). The
locations of these panels can be freely dragged to any

(a) (b) (c)
Fig. 6: (a)(b) The default location of image panel is on top
of the actual Kinect sensor in 3D, showing images acquired
from the Kinect sensor. (a) is captured by a DSLR camera
whereas (b) is captured directly by HoloLens. (c) The image
panel can be dragged to any 3D positions by gesture control.

3D positions around the robot using gesture control (see
Fig. 6c). Compared to other AR applications which display
information through tables or cell phones in which users’
hands are occupied, the present AR interface frees the users’
hands, providing better interactive experience as well as
affording more complex and natural gesture controls.

B. Visualizing Knowledge Structure and Decision Making
In addition to augmenting AR elements shown in Fig. 5

and 6, we also reveal the robot’s inner functioning and
knowledge structure through the holographical interface. The
knowledge structure is represented by a T-AOG (see Fig. 7a),
which encodes a repertoire of opening the bottles. The
structure of the T-AOG can be naturally inquired through
gesture control. This feature provides users with a high-level
semantic understanding of the robot’s action planner, that is,
how the robot behaved and will behave later.

Parsing the T-AOG will produce an action sequence (see
Fig. 7b), which consists of atomic actions that the robot can
execute to fulfill the task. By closely monitoring the dynamic
parsing process, the users can supervise the decision-making
process of the robot. As an example, Fig. 7c, 7d, and 7e
demonstrate three representative steps in the parsing. Next
action is selected with 100% at an And-node (see Fig. 7d)
as it represents a compositional relation and its child nodes
are deterministically executed in a temporal order. An Or-
node (see Fig. 7c and 7e) indicates a switching configuration
among its child nodes; one of its child nodes is selected based
on the branching probability.

By visualizing the sensory data (see Fig. 5, 6, and 8),
together with the knowledge structure and decision making
process (see Fig. 7), the robot’s inner functioning is revealed
comprehensively.

C. Diagnoses, Motion Control, and Knowledge Patching
Using the features provided by the proposed AR interface,

users can understand why (T-AOG parsing) and how (sensory
information, e.g., force response) the robot behaves. An
example is provided in Fig. 10a, showing an execution pro-
cess in opening a conventional bottle Bottle 1. Additionally,
users can diagnose redundant or wrong behaviors during the
executions.
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(a) (b) (c) (d) (e)
Fig. 7: Visualizing the robot’s knowledge structure and decision making process to the users. (a) The knowledge
representation, T-AOG. (b) A valid action sequences for opening bottles generated from the T-AOG. The robot decides
the next action by parsing the T-AOG: (c) (e) the next action is select by the branching probability at Or-node, and (d) the
next action is planned deterministically at And-node.

(a) (b) (c) (d) (e) (f)
Fig. 8: Visualizing the force exerted by the left end-effector shows the force readings of different actions: (a) grasp the
Bottle 1, (b) pinch the Bottle 1, (c) twist the Bottle 1, (d) grasp the Bottle 2, (e) twist the Bottle 2, and (f) push the Bottle 2.

Fig. 8 demonstrates a typical diagnose process in which a
user may reason about the redundant behaviors. Specifically,
Fig. 8a, 8b, and 8c show the robot’s force readings of its
left end-effector when performing the grasp, pinch, and twist
action in opening conventional bottle Bottle 1, respectively.
The red, green, and blue arrows indicate the canonical x, y, z-
direction relatively to the robot’s base, and the length of these
arrows are proportional to the corresponding force magnitude
sensed by the force/torque sensor at the end-effector. The
white arrow is the vector sum of these forces, providing
a more intuitive indication of how the force is applied.
Not only are the grasp and pinch actions executed in the
same way (closing the fingers), but also the force responses
are identical. These readings come to the conclusion that
the switching configuration between grasp and pinch is

(a) (b)
Fig. 9: User programs a new action through AR interface
by dragging the virtual gripper model to a new pose. (a) A
warning sign appears if the new pose is too aggressive. (b)
A new action Push is successfully programmed with proper
pose and parameters.

redundant and one of the actions could be removed.
Wrong actions can also be discovered. When a new task

is given, i.e., opening a medicine bottle with child-safety
lock that requires an additional pressing-down action on the
lid (e.g., Bottle 2-4), the robot executes the action sequence
based on existing knowledge (see Fig. 10b). Although the
majority of the robot’s existing knowledge remains un-
changed and produces desired results (see Fig. 8d), it lacks
the concept of “pressing down action”, resulting in the failure
to complete the task: the twist action only applies small
downward force, trying to unlock the safety mechanism.

In contrast to the traditional methods that require huge
efforts in re-programming or re-training the robot for new
repertoire, the proposed AR interface allows users to easily
provide new guidance interactively without physically inter-
acting with the robot. This teaching process is accomplished
by dragging the virtual gripper hologram to a new pose (see
Fig. 9). A warning sign would show up to alert users if
the new pose is out of range (see Fig. 9a). By locking the
displacements in certain directions, the user can define a
new action through modifying the existing twist action by
moving the end-effector downward to produce pressing force,
namely push action (see Fig. 9b). The resulting force reading
is shown in Fig. 8f. This process not only simplifies the
teaching process but also avoids physical contact between
users and the robot, which is safer to both human and robots.

Instead of providing single-time guidance to the robot, we
can interactively modify its knowledge so that the acquired
skill can be stored for future similar tasks. Due to the merit
of T-AOG’s high interpretability, the knowledge patching
is accomplished by deleting a redundant node or adding a
missing node. Fig. 10c shows an execution after patching
the knowledge, which leads to a successful execution. The
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(a) Successful execution of opening a conventional bottle Bottle 1.

(b) Wrong execution of opening a medicine bottle Bottle 2 with safety lock due to the lack of pressing down action.

(c) Successful execution of opening a medicine bottle Bottle 2 after knowledge patching.
Fig. 10: The execution of opening various types of medicine bottles.

redundant pinch and grasp actions are eliminated by deleting
the terminal node, e.g., the pinch action. The Or-node disap-
pears automatically as there is only one child-node remains,
and the terminal node merges with its parent And-node. The
new programmed action push becomes an alternative action
of the twist action.

Table I shows the success rates of opening four types of
the bottle before and after patching the T-AOG knowledge
structure. Since the Bottle 1 comes with no safety lock and
can be open regardless of the presence of pressing force or
not, its success rate in opening appears to be no difference by
deleting the redundant pinch action or adding the new push
action. In the cases of opening Bottle 2-4, the pressing force
is mandatory for the opening. Although a pressing force can
be produced accidentally through the twist action, the success
rate increased significantly after introducing new actions,
showing the effectiveness of our knowledge patching.

V. CONCLUSION

This paper presents an AR interface for teaching a robot
with interpretable knowledge to open various bottles. The
AR interface is built upon the state-of-the-art Microsoft
HoloLens headset which is an untethered device that allows
users move freely in the space while maintaining tracking of
users’ odometry. By communicating with the ROS platform,

TABLE I: Successful rate of opening bottles before and after
knowledge update.

Bottle 1 Bottle 2 Bottle 3 Bottle 4
Before 90% 30% 20% 20%
After 80% 90% 70% 70%

a number of ROS topic messages across different robot
systems, such as TF, and images can be visualized to users.
By visualizing the robot’s knowledge structure represented
by a T-AOG and its decision-making process, users can gain
a better insight of its inner functioning. When a new task
is given, the proposed AR interface allows easy diagnosing
about the failure execution, as well as providing an interac-
tive approach to teach the robot with new knowledge, as well
as maintain such knowledge by patching the T-AOG. Overall,
the proposed interface boosts the interactions between the
users and the robot.

There are several aspects of the future work that can sub-
stantially improve the proposed AR interface. As the demon-
stration data is current collected using a vison-based method,
learning the task composition (T-AOG) can be achieved by
unsupervised learning such that the robot can acquire most of
the knowledge by simply observing demonstrations without
any manual data labeling. In addition to gesture interactions
through HoloLens, language interactions can be explored as
well to provide more effective and natural interactions. Life-
long learning and active learning are promising as it allows
robots ask user questions in their decision-making process
so that the knowledge patching can take place autonomously
by querying, which is closer to humans teaching-learning
framework. Additionally, it is also interesting to collect hu-
man ratings based on the interpretability of various methods.
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