
WalkingBot: Modular Interactive Legged Robot
with Automated Structure Sensing and Motion Planning

Meng Wang1,2,3 Yao Su4 Hangxin Liu4 Yingqing Xu1,2,3

Abstract— This paper presents WalkingBot, a modular robot
system that allows non-expert users to build a multi-legged
robot in various morphologies using a set of building blocks
with sensors and actuators embedded. The kinematic model
of the built robot is interpreted automatically and revealed
in a customized GUI through an integrated hardware and
software design, so that users can understand, control, and
program the robot easily. A Model Predictive Control (MPC)
scheme is introduced to generate a control policy for various
motions (e.g. moving forward, turning left) corresponding to the
sensed robot structure, affording rich robot motions right after
assembling. Targeting different levels of programming skill, two
programming methods, visual block programming and events
programming, are also presented to enable users to create their
own interactive legged robot.

I. INTRODUCTION

Modular robots afford a variety of physical structures
and models by assembling and connecting a set of building
blocks. They result in a large space of robot morphologies
with potential benefits in education [1], machine learning [2],
disaster response [3] etc. Typically the constructed robot has
multiple limbs and practical locomotions are also desired to
endow it with certain mobility.

The locomotions of multi-legged robots have been studied
over the past decades [4]. However, the required kinematic
modeling and motion planning framework is still largely
relied on engineers’ manual efforts [5], which is less prac-
tical for modular robots with many different morphologies.
Recently, advanced (deep) reinforcement learning methods
can generate locomotion for multi-legged robots for users
without expert knowledge. But the progresses are either made
(i) in a virtual environment where the learned policy suffers
when transferring to physical systems [6], [7], or (ii) in
actual robots that can be time-consuming and limited in
generalization [8].

To alleviate the needs of manual efforts in modeling
or excessive training processes, it is desired to have an
automated system that can interpret the robot’s structure
and generate a motion policy accordingly. In this paper,
we present WalkingBot, a modular robot system that can
not only support the creation of various legged robot (see
Fig. 1), but can also automatically interpret its morphology
and generate a corresponding locomotion. To achieve this,
the system consists of three major components:

1 Academy of Arts and Design, Tsinghua University. Emails:
mengwangthu@tsinghua.edu.cn, yqxu@tsinghua.edu.cn

2 The Future Laboratory, Tsinghua University.
3 The Lab for Lifelong Learning, Tsinghua University.
4 DMAI Research. Emails: yaosu@dm.ai, liuhangxin@dm.ai

Fig. 1: Different WalkingBot configurations: (a) standard quadruped
configuration with an additional range sensor; (b) another
quadruped configuration by using rotation blocks; (c) modified
quadruped configuration with an additional neck, legs differ in
length; (d) standard hexapod configuration with two additional
sound sensors.

1) Hardware Design. A set of building blocks is designed
with sensors and actuators embedded, resulting in various
legged robots with different sensing capabilities. We also
implement a local serial connection network among the
connected blocks to detect and interpret the robot’s kine-
matic structure, which later facilitates its motion planning.

2) Motion Planning. Given the sensed robot structure, we
design a MPC scheme to automate the robot’s gait pattern
generation for different walking directions and speeds by
formulating a multi-objective optimization that can be
effectively solved online. Finally, a position control is
implemented to track the generated gait patterns.

3) Programming Interface In addition to the software in
supporting its structure interpretation and motion plan-
ning, two programming interfaces — visual block pro-
gramming and event programming are introduced to allow
non-expert users to interact with the WalkingBot.

The remaining of this paper is organized as follows. In
Section III, we introduce the overall hardware and software
designs of WalkingBot, as well as its prototyping. The
Methodology of the structure sensing and motion planning
are described in Section IV. Section V introduces two
programming methods. Finally, we discuss and conclude our
work in Section VI.

II. RELATED WORK

Building Blocks have been demonstrated as a type of
promising modular Tangible User Interface (TUI) for in-
teractive construction. Anderson et al. introduces a method

to build virtual structures with LEGO-like blocks as early
as 1999 [9]. Kitamura et al. presents ActiveCube, which
allows for real-time 3D interaction with tangible cubes [10].
Jacobson and Glauser develop a tangible input device as
an armature to rig an animation [11]. TwistBlocks provides
building blocks for children to create armature-based anima-
tion between multiple characters [12]. However, the building
blocks involved above did not incorporate actuators, whereas
those in WalkingBot embed actuation for a more interactive
experience.

Modular Reconfigurable Robot is a popular topic in
robotics. Versatile functions can be implemented by the
combination of limited robotic modules. Yim et al. discusses
a lot about modular self-reconfigurable robot systems [13].
PolyBot and PolyKinetic [14] present a modular reconfig-
urable robot, a robotic scripting language, and a program-
ming environment. Kalouche et al. integrates modularity into
legged robots and presents many different configurations
[15]. Snapbot [16] introduces a reconfigurable legged robot,
and presents an automated learning environment for devel-
oping control policies directly on the hardware [2]. Despite
their good design and performance, developing an automated
way to interpret robot morphology and generate motions has
not been the focus. WalkingBot addresses this problem to
encourage more natural interactions between the modular
robot and non-expert users.

Programming Education for teaching young children
programming is a classic research topic in the field of HCI.
A notable early work is the LOGO language by Papert [17].
Nowadays children can use Scratch [18] to program the
behavior of a virtual cat. Recently, a larger number of
creative construction kits have been introduced. Notable
product series designed for children are LEGO Mindstorms
and WeDo [19]. Tangible programming is another framework
proposed that aims to encourage young children in learning
physical programming and robotics. Topobo [20] introduces
a 3D constructive assembly system embedded with kinetic
memory and the ability to record and playback physical
motion. roBlocks (now Cubelets) [21] provides tangible logic
cubes for programming between sensors and actuators. Fol-
lowing this trend, we develop two programming interfaces,
visual block programming, and events programming to allow
non-expert users to interact with the system.

III. DESIGN AND MODELING

WalkingBot aims to promote interactions in building a
mobile multi-legged robot. Thus, we introduce the hardware
and software designs for its building blocks and connections
in the subsequent subsections to achieve this goal.

A. Hardware Design

WalkingBot consists of a main body and various modular
blocks, as shown in Fig. 2. The connections between blocks
and the body are done through a unified design of dovetail
joint with 5-pin male/female connectors embedded to allow
easy attach and detach the blocks while to transfer mechani-
cal forces, electrical power, and communication among them.
The blocks’ sizes and weights are tabulated in Table I.

Fig. 2: Blocks of WalkingBot.

Main Body contains the necessary components for pro-
gramming and running the robot, including a battery, a
voltage regulator, a wireless module, a Micro Control Unit
(MCU) etc. The main body is designed into an octagonal
prism shape, and blocks can be connected to each of the
eight side faces. The octagonal prism offers a convenient
way of constructing a robot with up to 8 legs. In addition,
there are multiple connectors on the upper surface, enabling
users to add other functional structures such as sensors and
display screen or kinematic structures, e.g. a neck.

Servo Blocks are the key to assemble legs and enable
motions for the robot. Every servo block can perform 180-
degree rotation and have a pair of male and female connec-
tors at the two ends to extend the structures by connecting
different parts. Some examples are shown in Fig. 3.

Sensor Blocks include various kinds of sensors supported
by our hardware protocol. In this work, we present a range
sensor block, sound sensor block, and screen block (see
Fig. 2) for the interaction with the environment and users.

Passive Blocks only serve as mechanical parts. Normal
passive blocks can be used to adjust the length or rotate the
orientation of a leg structure. The foot block is the special
block to be put at the end of a leg.

B. Prototyping
The hardware design follows the principle of modularity

in both connection and functionality. Fig. 4 shows the major
components in prototyping to support the desired modularity.
The main body contains a battery (7.4V) with a voltage
regulator to power the whole robot, a MCU (ATMEGA 328P)
to memory the control policy and coordinate every block, and
a BLE wireless module to communicate with control panels.

A servo block has a servo motor (DYNAMIXEL XL-320)
connecting to an embedded MCU that stores a designated ID

TABLE I: Hardware parameters of the robot

Size L×W×H (mm) Weight (g)
Main body 120×120×32 185
Servo block 68×36×30 44

Passive block 34×30×30 15
Foot block 46×30×30 11

Sound sensor 34×30×30 18
Range sensor 34×60×30 23

Fig. 3: (a) Two servo blocks connecting directly creates a relative
rotation of 90-degree; (b) Extension block can be used to adjust the
length of legs; (c) Rotation block can be used to adjust the rotation
axis of legs.

Fig. 4: Hardware components of the main body and a servo block.

to the block. A pair of male and female connectors are also
connected to the MCU, enabling the block to join the IIC
data bus and meanwhile receive/send topology information
from/to nearby blocks. Sensor blocks have a similar design
with different sensors embedded instead of servo motors,
while passive blocks have nothing embedded but vary in the
direction of the dovetail joints. All the blocks communicate
through a generate protocol, such that various sensors or
actuators can be compatible with the system. All the blocks
are 3D-printed with PLA material in the prototype.

To construct the robot’s legs, multiple blocks can be used.
The rotation axes of two servo blocks are offset by 90-degree
if they are directly connected (Fig. 3a). Passive blocks, with
or without rotation, can be used to adjust the length of a leg
as well as the rotation axes (Fig. 3bc). In addition to the legs
connected to the main body, other structures, such as neck,
face, and sensors can also be connected, resulting in various
robot configurations, as shown in Fig. 1.

C. Software Design

Network Architecture: Our data network (Fig. 5) con-
sists of three physical layers: an IIC bus for data transmission
within the robot, a local serial connection network between
blocks for topology detection and reconstruction, and a BLE
connection between the robot and the control panel.

The IIC bus works at 400kHz and can hold at most 127
blocks in theory. The main body works as a master device,
consolidating sensing data from blocks and sending com-
mands to them. The local serial connection is a unidirectional
serial interface between each two connected blocks, by which
they communicate to know who they are connected to. The
BLE connection is used by the control panel to receive
sensing data, control the robot, or upload scripts.

Protocol: The system’s data packet is carefully de-
signed with a size less than 10Bytes, which can be completed
within 0.2ms in our 400kHz data bus, to avoid system
latency. Therefore, roughly 1/5 MCU operational time can
be reserved for consolidating data and at least 50 blocks can
be working simultaneously.

Table II shows an example of the designed packet format.

Fig. 5: Network Architecture. IIC Bus is responsible for the data
transmission between body and blocks. The detection network
senses the connectivity between blocks to interpret the robot’s
kinematic structure. Information between the robot and a PC is
transmitted through Bluetooth.

In particular, Header indicates the start of the packet. Type
indicates the type of block or command. ID indicates the
ID of a block. Event indicates different events if used
Data contains a 2Byte parameter. CRC checks if the packet
has been damaged during communication. This format is
compact enough to meet the size constraint while ensuring
all necessary communications between the body and blocks;
some examples are listed as follows:
• Send a packet to a sensor to register an event.
• Receive sensing data from a sensor.
• Send command to an actuator.
• Send or receive topological information.
• Send ACK to control panel.
• Send debug information to control panel.
• Set PID parameters.

The specific values in Table II used during events pro-
gramming stand for sending an event packet (Type=0×F9)
from the main body to senor (ID=0×10) and telling it to
respond when value > 512. The range sensor (Type=0×04)
returns a response when its value=767. Then the main body
sends an event packet to a servo block (ID=0×40) telling it
to rotate to 90 degree.

IV. STRUCTURE INTERPRETATION AND MOTION PLANNING

A. Structure Interpretation and GUI

We developed a software control panel (Fig. 6a) to visu-
alize the motion planning process. To begin with, the robot
checks its topological structure automatically on startup and
forwards it wirelessly to the screen on the control panel.
Any physical structure change after startup can be applied by
clicking the rescan button. Blocks are displayed in different
colors according to their type. One can drag, rotate, or scale

TABLE II: Example of packets of different usage.
Register Sensing Command

Header 0×FC 0×FC 0×FC
Type 0×F9 0×04 0×F9
ID 0×10 0x×0 0×40

Event 0×01 0×01 0×00
Data H 0×02 0×02 0×02
Data L 0×00 0×FF 0×00
CRC 0×08 0×12 0×37

(a) (b)
Fig. 6: (a) Control panel showing the structure of quadruped robot
in Fig. 1a. (b) Abstracted model of a quadruped robot.

the model to examine every part of the robot, and even
choose any block to see its status or test its functions.

ID Generation The system utilizes dynamic IDs, such that
a control policy will still work after any blocks are replaced.
The main body can have up to 16 branches, of which 8
are legs. Every branch can have up to 8 blocks, such that
every possible topological position has a unique ID from 0 to
127, which also serves as the IIC address of the device. The
main body keeps sending topological packets via its female
connectors, indicating the ID from which the branch starts.
Any block connected to the main body waits for the packet,
initializes the device, and sends the next ID via its female
connector. Finally, every block can get its ID according to
its topological position.

Scan The main body scans all 128 addresses to see if there
are a response and records all valid addresses in a list. Then
the main body will keep consolidating sensing data from
blocks. The received data packet containing block type, ID,
and sensing value will be forwarded to the control panel to
be reconstructed.

Reconstruction The control panel records properties of
every block, including length, width, height, weight, connec-
tor position, and so on. After receiving a packet, the type of
data can be used to get these properties, the ID data indicates
how these blocks are connected, and the sensing value of
servo blocks presents its current rotation. Then we have
enough information to easily reconstruct the robot structure
and present it on the screen as shown in Fig. 6a.

Upload After the robot structure is reconstructed in the
control panel, one can click the generate button to produce
a corresponding motion policy, including gaits for walking
forward, sideways, and turning in place (if able), within a few
seconds. The policy is subsequently loaded into the simulator
to help users verify the generated motions. Users can also
send the policy to the robot by clicking upload.

B. Motion Planning

WalkingBot can be configured into various morphologies,
it is impossible to pre-design all control policies for its
motions. Inspired by the idea of Megaro et al. [22], who
developed an algorithm to generate a control policy after non-
expert users edited the robot’s structure (add/remove joints,
adjust bone length) or the footfall pattern in the software,
our system integrates a similar function such that its struc-
ture interpretation and motion planning can be completed
automatically

Structure Abstraction We firstly abstract the robot’s
kinematic to a joint-link structure. The center of each servo

block becomes a 1-DOF joint and a link is modeled by the
length and weight of corresponding blocks. We also use a
matrix to present the relative direction of every joint.

Footfall Pattern Generation In order to speed up the
motion planning process and enable a more responsive inter-
action, we design some general footfall patterns based on the
number of legs. After recognizing the robot’s structure, these
pre-designed footfall patterns can be utilized to generate
control policies.

Motion Generation With different parameters such as the
walking direction, speed, or turning rate, gaits for different
motions (walking forward, sideways, and turning) can also
be generated.

We implemented a MPC scheme which is commonly used
in robotics to decouple the generation of the Center of Mass
(CoM) trajectories, the motion of feet, and full-body joint
angles [23]. In particular, a Linear Inverted Pendulum Model
(LIPM) is utilized to simplify the relationship between the
built robot’s Center of Pressure (CoP) and CoM [24]. The
discretized dynamics of the LIPM is described as

˙̂xk+1 =

1 T T 2/2
0 1 T
0 0 1

x̂k +

T 3/6
T 2/2

T

uk

px,k = [1 0 −zc/g]x̂k

(1)

where uk =
...x k and x̂k = [xk, ẋk, ẍk]

T . xk, ẋk, and ẍk are the
horizontal position, velocity, and acceleration of the CoM at
k-th sample time step, respectively. px,k is the CoP position
planned prior to k, and zc is the desired control height of the
CoM.

According to [24], we can augment this model through N
steps’ iteration and get an augmented linear dynamic system
as shown in Equation 2:

Px,k+1 =Mxx̂k +MuUk

Mx =

1 T T 2/2−zc/g
...

...
...

1 NT N2T 2/2−zc/g

N×3

Mu =

 T 3/6−T zc/g 0 0
...

. . .
...

(1+3N+3N2)T 3/6−T zc/g . . . T 3/6−T zc/g

N×N

(2)
where N is the preview horizon, Px,k+1 =

[px,k+1, . . . , px,k+N]
T , Uk = [

...x k,
...x k+1, . . . ,

...x k+N]
T .

Given a reference CoP trajectory Pre f
x,k+1 =

[pre f
x,k+1, pre f

x,k+2, . . . , pre f
x,k+N]

T , Equation 2 can be formulated
as a Quadratic Programming problem, and the objective
function is chosen as:

min
Uk

1
2

Q(Px,i+1−Pre f
x,i+1)

2+
1
2

RU2
k (3)

where R and Q are the weight for reference tracking errors
and the minimum

...x k, respectively. The optimal solution to
the jerk of xk is given as [25]:

...x k =−eT ((MT
u Mu+

R
Q

I)−1MT
u (Mxx̂k −Pre f

x,k+1)) (4)

where e= [1,0, . . . ,0]T1×N and I is an identity matrix of
N order. This optimal input uk =

...x k yields the desired CoM

Fig. 7: Gaits generated using our motion planning framework for
two robot morphologies.

and CoP trajectories according to Equation 1.
We modified the motion generation framework in [22] to

generate a joint angle command for each motor by treating
the errors between desired and actual CoM and CoP, and the
end-effector positions as the objective of a constrained multi-
objective optimization. In particular, [22] treats the CoM as
an optimization variable and uses finite difference method to
calculate the CoP reference in LIPM model. We instead use
the CoM and CoP obtained from the above MPC problem as
the reference trajectory to accelerate the optimization process
with fewer variables.

Our modified framework can effectively generate a rea-
sonable walking gait, and the different CoM trajectories can
be used to guide the robot walk to different directions or
change walking speed. Finally, we implement a position
control to track the generated gait and output a table of
servo positions to be uploaded into the robot. With well-
tuned PID parameters of motors, the robot is able to walk
stably; examples are shown in Fig. 7.

Noted that not every robot configuration supports walking.
Although the algorithm sometimes does produce a solution,
the robot may not be able to execute that properly and some
basic instructions to users of creating a walkable robot are
needed. We will discuss this in Section VI.

V. PROGRAMMING INTERFACE

Two programming methods, targeting different levels of
programming skill, are further developed for non-expert
users, e.g. children, to create their interactive robots.

Visual Block Programming is a framework utilized by
many education software such as the MIT Scratch [18].
We developed a plug-in for the Scratch software, such that
users can easily program the robot in Scratch (Fig. 8). The
plug-in works together with the control panel. One can look
up the ID of every block in the control panel. In Scratch,
they drag sensor blocks to read a value or drag actuator
blocks to execute some actions. We also integrate the visual
block programming into the control panel, such that available
blocks will turn up automatically without users’ efforts in
retrieving the IDs.

Events Programming While the Scratch utilizes intuitive
visual blocks, the programming framework is still the same
as traditional programming, which requires the understanding
of concepts, such as If, Loop, etc.. Considering users with
less experience in programming, we provide a more intuitive
way to interpret how a robot really works. This utilizes a
simplified subsumption architecture [26] in robotics. Every

Fig. 8: Visual block programming. The robot will nod and smile.

sensor has a list of input events, and every actuator (includ-
ing the main body) has a list of output events. An input
event and an output event can be associated together with
some parameters, such that an event-response control rule is
created (Fig. 9). Multiple rules can be sorted in a stack and
work together. If any conflict occurs, the actuator will work
according to the one with higher priority in the stack. The
robot can follow these rules to interact with the environment,
and act like real living creatures.

Comparison A pilot study is conducted to compare the
two programming interfaces, and the results are shown in
Fig. 10. A total of 17 participants are invited to evaluate
the two programming interfaces based on score 1 to 10 for
four criteria: easy-to-use, flexibility, efficiency, and personal
preference. The result (two-tailed t-test)indicates that Events
Programming is easier to use (p= 0.041) but less flexible
(p= 0.003) compared to Visual Block Programming.

VI. DISCUSSION AND CONCLUSION

A. Discussion

Gait Pattern In the current stage, we use pre-designed
footfall patterns to generate gait’s control policy. Meanwhile,
some configurations of WalkingBot, e.g. those with an odd
number of legs, cannot walk stably; the system produces an
awkward or cumbersome walking gait.

Indeed, we can hardly find natural creatures with 3 or 5
legs, which creates a challenge for footfall pattern design.
A future direction of WalkingBot would be developing an
automated approach to generate the footfall pattern and
couple that with higher-level features such as personality and
emotion. In addition, the system can be used for education
proposes by providing knowledge of animal (insect) locomo-
tion to children through creating robots with higher mobility.

Fig. 9: Events programming. The robot will go backward if anything
approaches it.

Easy-to-Use Flexibility Efficiency Preference

2

4

6

8

10
S

c
o

re
* **

Scratch

Event

Fig. 10: Comparison between two programming interfaces.

Programming Interface Visual block programming and
events programming have different trade-offs. Visual block
programming is similar to a traditional programming method
that requires a higher level of skill. Naive users (e.g. children)
can improve their programming skills using this interface.
Events programming is easier and more intuitive to convey
the logic relationship in the robot system during interactions,
but it becomes too complicated when there are too many
rules. Other interfaces, such as Augmented Reality [27], [28]
can be investigated in the future as well.

Limitations Some configurations of the robot cannot walk
well in the real-world even though a desired gait is generated.
The friction coefficient of the surface may be an important
factor for this issue, and a footpad for foot blocks can be
introduced to adapt to the ground of different materials.

In addition, we will develop more sensor and actuator
blocks to expand its functionality and capability, which
can encourage childrens imagination, creativity, and support
creative learning.

B. Conclusion
This paper presented WalkingBot, a modular multi-legged

robot system that can automatically interpret the robot’s kine-
matic structure through an integrated hardware and software
design, and generate a walking gait using a MPC scheme.
Visual block programming and event programming are in-
troduced for non-expect users, showing the potential of the
proposed system in e.g. education, human-robot interaction.

ACKNOWLEDGEMENT

We thank Ms. Jiasi GAO and Dr. Yixin Zhu at DMAI for
the creative discussion. This work is supported by National
Key Research and Development Plan of China under Grant
No. 2016YFB1001402, Tsinghua Shuimu Scholarship, and
Tsinghua University Initiative Scientific Research Program
(20197010003).

REFERENCES

[1] J. Leong, F. Perteneder, H.-C. Jetter, and M. Haller, “What a life!:
Building a framework for constructive assemblies,” in Proceedings of
the Eleventh International Conference on Tangible, Embedded, and
Embodied Interaction, ACM, 2017.

[2] S. Ha, J. Kim, and K. Yamane, “Automated deep reinforcement
learning environment for hardware of a modular legged robot,” in 15th
International Conference on Ubiquitous Robots (UR), IEEE, 2018.

[3] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Camp-
bell, “An integrated system for perception-driven autonomy with
modular robots,” Science Robotics, vol. 3, no. 23, p. eaat4983, 2018.

[4] X. Lin, H. Krishnan, Y. Su, and D. W. Hong, “Multi-limbed robot
vertical two wall climbing based on static indeterminacy modeling and
feasibility region analysis,” in International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2018.

[5] J. J. Craig, Introduction to robotics: mechanics and control, 3/E.
Pearson Education India, 2009.

[6] X. B. Peng, G. Berseth, and M. Van de Panne, “Terrain-adaptive loco-
motion skills using deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, p. 81, 2016.

[7] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Robotics: Science and Systems (RSS), 2018.

[8] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Robotics:
Science and Systems (RSS), 2018.

[9] D. Anderson, J. L. Frankel, J. Marks, D. Leigh, E. Sullivan, J. Yedidia,
and K. Ryall, “Building virtual structures with physical blocks,” in
Proceedings of the 12th annual ACM symposium on User interface
software and technology, ACM, 1999.

[10] R. Watanabe, Y. Itoh, M. Asai, Y. Kitamura, F. Kishino, and
H. Kikuchi, “The soul of activecube: implementing a flexible, mul-
timodal, three-dimensional spatial tangible interface,” Computers in
Entertainment (CIE), vol. 2, no. 4, pp. 15–15, 2004.

[11] A. Jacobson, D. Panozzo, O. Glauser, C. Pradalier, O. Hilliges, and
O. Sorkine-Hornung, “Tangible and modular input device for character
articulation,” ACM Transactions on Graphics (TOG), vol. 33, no. 4,
p. 82, 2014.

[12] M. Wang, K. Lei, Z. Li, H. Mi, and Y. Xu, “Twistblocks: Pluggable
and twistable modular tui for armature interaction in 3d design,”
in Proceedings of the Twelfth International Conference on Tangible,
Embedded, and Embodied Interaction, ACM, 2018.

[13] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[14] A. Golovinsky, M. Yim, Y. Zhang, C. Eldershaw, and D. Duff, “Poly-
bot and polykinetic/spl trade/system: a modular robotic platform for
education,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2004.

[15] S. Kalouche, D. Rollinson, and H. Choset, “Modularity for maximum
mobility and manipulation: Control of a reconfigurable legged robot
with series-elastic actuators,” in International Symposium on Safety,
Security, and Rescue Robotics (SSRR), IEEE, 2015.

[16] J. Kim, A. Alspach, and K. Yamane, “Snapbot: A reconfigurable
legged robot,” in International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2017.

[17] S. Papert, Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

[18] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The scratch programming language and environment,” ACM Trans-
actions on Computing Education (TOCE), vol. 10, no. 4, p. 16, 2010.

[19] “Lego education.” Accessed: 2018-08-31.
[20] H. S. Raffle, A. J. Parkes, and H. Ishii, “Topobo: a constructive

assembly system with kinetic memory,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM, 2004.

[21] E. Schweikardt and M. D. Gross, “roblocks: a robotic construction
kit for mathematics and science education,” in Proceedings of the 8th
international conference on Multimodal interfaces, ACM, 2006.

[22] V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and
S. Coros, “Interactive design of 3d-printable robotic creatures,” ACM
Transactions on Graphics (TOG), vol. 34, no. 6, p. 216, 2015.

[23] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using pre-
view control of zero-moment point,” in International Conference on
Robotics and Automation (ICRA), 2003.

[24] J.-w. Luo, Y.-l. Fu, and S.-g. Wang, “3d stable biped walking control
and implementation on real robot,” Advanced Robotics, vol. 31, no. 12,
pp. 634–649, 2017.

[25] P.-b. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in 6th IEEE-RAS
International Conference on Humanoid Robots, IEEE, 2006.

[26] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[27] H. Liu, Y. Zhang, W. Si, X. Xie, Y. Zhu, and S.-C. Zhu, “Interactive
robot knowledge patching using augmented reality,” in International
Conference on Robotics and Automation (ICRA), 2018.

[28] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos,
and E. Croft, “Robot programming through augmented trajectories in
augmented reality,” in International Conference on Intelligent Robots
and Systems (IROS), 2018.

