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Abstract— Existing methods for reconstructing interactive
scenes primarily focus on replacing reconstructed objects with
CAD models retrieved from a limited database, resulting in sig-
nificant discrepancies between the reconstructed and observed
scenes. To address this issue, our work introduces a part-
level reconstruction approach that reassembles objects using
primitive shapes. This enables us to precisely replicate the
observed physical scenes and simulate robot interactions with
both rigid and articulated objects. By segmenting reconstructed
objects into semantic parts and aligning primitive shapes to
these parts, we assemble them as CAD models while estimating
kinematic relations, including parent-child contact relations,
joint types, and parameters. Specifically, we derive the optimal
primitive alignment by solving a series of optimization prob-
lems, and estimate kinematic relations based on part semantics
and geometry. Our experiments demonstrate that part-level
scene reconstruction outperforms object-level reconstruction
by accurately capturing finer details and improving precision.
These reconstructed part-level interactive scenes provide valu-
able kinematic information for various robotic applications;
we showcase the feasibility of certifying mobile manipulation
planning in these interactive scenes before executing tasks in
the physical world.

I. INTRODUCTION

Reconstructing surroundings is critical for robots, enabling
them to understand and interact with their environments.
However, traditional scene reconstruction methods primarily
focus on generating static scenes, represented by sparse land-
marks [1, 2], occupancy grids [3], surfels [4, 5], volumetric
voxels [6, 7], or semantic objects [2]. These representations
lack the ability to capture the dynamic nature of robot
operations and limit the complexity of tasks that can be
performed, such as interactions with objects beyond pick-
and-place. This limitation calls for a new approach that
places interactions at the core of scene reconstruction.

By enriching the reconstructed scenes with interactions
that allow robots to anticipate action effects and verify their
plans without executing them in the physical world, Han
et al. proposed a novel task of reconstructing interactive
scenes that can be imported into ROS-based simulators [8, 9],
which is crucial for long-horizon task and motion planning
(TAMP) [10–12]. This approach involves using a 3D panop-
tic mapping method to reconstruct scenes from RGB-D data,
segmenting objects, and representing them as 3D meshes
(Fig. 1a). The segmented object meshes are then replaced
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(a) Panoptic mapping

(b) Scene reconstruction with object-level CAD replacement [8]

(c) Scene reconstruction with part-level CAD replacement (ours)
Fig. 1: Reconstructing interactive scenes. (a) The initial step
involves generating a panoptic mapping result with recognized and
segmented object instances. (b) Existing methods [8, 9] replace
the objects with pre-built CAD models, resulting in significant
differences from the observed scenes. (c) In contrast, our proposed
approach focuses on part-level reconstruction, replacing object parts
with aligned primitive shapes. This yields interactive scenes with
finer details and better alignment with the physical environment.

with CAD models from a database, which provide actionable
information about how robots can interact with them. This
approach facilitates the emulation of complex interactions
in simulated environments. Fig. 1b shows a reconstructed
interactive scene with objects replaced by CAD models.

Despite the successful attempt to reconstruct interactive
scenes, there are challenges in reproducing the observed
scenes with adequate fidelity. As shown in Figs. 1a and 1b,
noisy perception and severe occlusions in the scans often
result in unsatisfactory CAD replacements. The database’s



limited number of CAD models further compounds this
issue, as they cannot account for the wide variety of ob-
jects robots may encounter. As a result, the reconstructed
interactive scenes may lack realism and fail to represent the
physical scenes accurately.

In this work, we aim to improve the fidelity of recon-
structed interactive scenes by extending the approach of
Han et al. [8, 9]. We propose a part-level reconstruction
strategy that focuses on reconstructing scenes by replacing
object CAD models at the part level instead of the object
level. We employ a semantic point cloud completion network
to decompose and complete each noisily segmented object
into parts. Next, we perform part-level CAD replacement,
including aligning primitive shapes to individual parts and
estimating their kinematic relations. This pipeline (see Fig. 2)
enables the creation of a kinematics-based scene graph that
captures the geometry, semantics, and kinematic constraints
of the environment, facilitating more realistic robot inter-
actions. Our part-level reconstructed interactive scenes (see
Fig. 1c) closely align with the physical scenes, providing the
fidelity that can enable more accurate simulations of robot
interactions.

A. Related work

Constructing an effective scene representation that facili-
tates robot mobile manipulation planning is an open problem.
Traditional semantic mapping and simultaneous localization
and mapping (SLAM) methods produce flat representations
primarily suited for navigational tasks [13]. In contrast,
graph-based representations such as scene grammar [14–
16] and 3D scene graphs [8, 17–19] offer more structural
and contextual information, enabling more versatile robot
planning capabilities. In particular, Han et al. [8, 9] intro-
duced a contact graph that can be automatically converted
into a unified robot description format (URDF), providing
robots with interpretable kinematic relations [11, 12, 20, 21].
Building upon this work, our approach extends the field
by introducing a part-level CAD replacement algorithm for
reconstructing interactive scenes.

In the domain of object modeling, part-based approaches
leverage computer vision techniques to track movements
among object parts [22, 23], exploit contextual relations
from large datasets [24–26] or develop data-efficient learn-
ing methods [27, 28]. These approaches aim to recognize
and segment object parts, enhancing the understanding of
complex object structures, but they do not yield a holistic
representation of a scene that encompasses multiple objects.

Part-level primitive shapes, such as spheres, cylinders,
and cuboids, have been utilized to simplify the modeling
of complex objects in images [29, 30] and scenes [31, 32].
However, these part-level representations typically focus on
the static aspect of the perceived environment, lacking the es-
sential kinematic information required for robots to actively
interact with their surroundings. This absence of kinematic
information is a common limitation in the robotics commu-
nity. To bridge this crucial information gap, we propose a

novel part-level framework that leverages primitive shapes
and estimates their kinematic relations.

B. Overview

This paper is organized as follows: Sec. II presents our
kinematics-based scene graph representation. Sec. III intro-
duces the part-level CAD replacement algorithm. In Sec. IV,
we demonstrate the efficacy of the proposed method in
various settings. Finally, Sec. V concludes the paper.

II. KINEMATICS-BASED SCENE REPRESENTATION

We extend the contact graph (cg) introduced by Han
et al. [8] to represent 3D indoor scenes by incorporating
scene entity parts and their kinematic information. The cg “

ppt, Eq consists of a parse tree (pt) and a set of proximal
relations (E). The parse tree organizes scene entity nodes
(V ) hierarchically based on supporting relations (S), while
the proximal relations capture the relationships between
objects. Each object node in V includes attributes describing
its semantics and geometry while supporting and proximal
relations impose constraints to ensure physically plausible
object placements.

To enhance the cg, we introduce an additional attribute,
denoted as ptp, to each object node v PV . This attribute
represents a per-object part-level parse tree (ptp), which or-
ganizes part entities (V p) along with their kinematic relations
(J ). The part entities and kinematic relations are defined as
follows.

The set of part entity nodes, denoted as V p “ vp, rep-
resents all part entities within an object. Each part entity,
vp “ xl, c,M,Πy, encodes a unique part instance label (l), a
part semantic label (c) such as “table leg,” a geometry model
(M ) in the form of a triangular mesh or point cloud, and a set
of surface planes (Π). The surface planes are represented as
Π“ pπk, Ukq, where Uk is a list of 3D vertices defining
a polygon that outlines the plane πk. The plane πk is
represented by a homogeneous vector rnkT , dksT PR4 in
projective space. The unit plane normal vector is denoted
as nk

i , and the equation nkT ¨u`dk “ 0 describes the con-
straint satisfied by any point u PR3 on the plane.

The set of kinematic relations, J “ Jp,c, represents the
parametric joints between part entities within an object. A
joint, Jp,c “ xtp,c, Tp,c,Fp, cy, exists between a parent part
(vp) and a child part (vc). The joint encodes the joint type
(tp, c), the parent-to-child transformation (Tp,c), and the joint
axis (Fp,c PR3).

In this paper, we consider three types of joints:
‚ fixed joint: Represents a rigid connection between

two parts, such as a table top and a table leg.
‚ prismatic joint: Indicates that one part can slide

along a single axis with respect to the other, as seen in
an openable drawer and a cabinet base.

‚ revolute joint: Represents a joint where one part
can rotate around a single axis in relation to another part,
like the door and base of a microwave.
Establishing a kinematic relation between two parts vp

and vc requires them to be in contact with each other by



Fig. 2: System architecture for part-level interactive scene reconstruction. (a) The initial step involves completing and segmenting the
point clouds of the noisily segmented 3D objects, resulting in (b) a part-based panoptic map. (c) Each completed object part is replaced
with the most aligned primitive shape. The optimal combination of part alignments, determined by the highest IoU, is selected to (d)
estimate the kinematic relations among the parts. (e) The replaced object parts and their relations are compiled into a URDF representation,
capturing the kinematics of objects and the scene. This URDF can be imported into various simulators for TAMP tasks.
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defines the alignment between two surface
planes, absp¨q computes the absolute value, and θa is the
threshold to determine a good alignment (θa = 1 for a
perfect alignment where two planes are parallel);
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defines the distance between the surface
planes by averaging the distances from vertices of polygon
U j
c (that outlines the surface plane πj

c ) to plane πi
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the number of vertices, and θd is the maximum distance
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where ûj
c is the projected point of uj

c on the plane πi
p, and

ui
p is an arbitrary point on πi

p.

By definition, a cg augmented with object parts and
kinematics sufficiently defines objects’ semantics, geometry,
and articulations in a scene. Crucially, such a representation
is also naturally compatible with the kinematic tree and could
be seamlessly converted to a URDF for various downstream
applications. Leveraging cg, a robot can reason about the
action outcomes when it interacts with (articulated) objects.

III. PART-LEVEL CAD REPLACEMENT

We aim to replace the segmented and completed part enti-
ties (as shown in Fig. 2b) with best-aligned primitive shapes
while estimating their kinematic relations, and construct a
part-level contact graph cg as defined in Sec. II.

A. Individual part alignment

For each individual part, we select a primitive shape
with a sufficient level of similarity and calculate a 6D
transformation to align the shape to the part. Given a part
entity with a point cloud segment P , we find an optimal
primitive shape M˚ from a finite set of primitive candidates
Mc and an optimal 6D transformation T˚

ind PSEp3q that
aligns M˚ with P . We obtain Mc based on pre-defined
primitive shape templates and a 3D scaling vector estimated
from the minimum-volume oriented 3D bounding box of
P [33]. The optimization problem can be formulated as
follows:

M˚, T˚
ind “ min

MiPMc,TPSEp3q

1

|hpMiq|

ÿ

uPhpMiq

dP pTi ˝uq, (3)

where hpMiq is a set of evenly sampled points on the surface
of the CAD model Mi, dP puq is the distance from a sampled
point u to the closest point in P , and Ti ˝u is the position
of point u after applying transformation Ti.

To solve this optimization problem, we compute the op-
timal transformation T˚

i for each primitive candidate Mi

using the iterative closest point method [34]. Then M˚ is the
primitive candidate with the smallest minimum total distance
among all candidates tMiu, and T˚

ind is the corresponding
optimal transformation in tT˚

i u.

B. Kinematic relation estimation

After replacing part entities with primitive shapes based on
individual shape alignment results, we estimate the parent-
child contact relations and kinematics (i.e., parametric joints)



between parts to obtain a per-object part-level parse tree ptp.
To initialize a part node vp:
1) We acquire its part-level semantic label c, instance label

l, and point cloud P .
2) We replace its point cloud P with a primitive shape M ,

as described in Sec. III-A.
3) We extract surface planes Π from M by iteratively

applying RANSAC [35].
For a set of part entity nodes V p corresponding to an

object, we estimate the structure of ptp, i.e., the optimal
parent-child contact relations among the parts of an object
Sp˚

“ tsp,cu in terms of Eq. (1). We formulate an opti-
mization problem to maximize the overall contact scores
Cont p¨, ¨q while satisfying the constraints in Eq. (1):
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We solve this optimization problem in two steps:
1) We construct a directed graph with nodes in V p. By

traversing all pairs of nodes, our algorithm adds an edge
sp,c from node vp to node vc to the graph if they satisfy
the constraints in Eq. (4), with the edge’s weight set to
maxi,j

`

Cont
`

U i
p, U

j
c

˘˘

.
2) We find the optimal parent-child relations Sp˚. Although

the constructed graph entails all possible contact relations
among entities, it may not be in the form of a parse tree
since the indegree of a node could be greater than 1 (i.e.,
a node has multiple parents), violating the definition of a
rooted tree. Finding the optimal parent-child relations is
equivalent to finding a directed spanning tree of maximum
weight in the constructed graph, known as an arbores-
cence problem. We adopt Edmonds’ algorithm [36] to
solve this problem.

Next, we estimate parameterized joints J for all parent-
child relations in Sp˚ by matching the primitive parts to a
library of articulated templates. This involves determining
the joint types, joint axes, and joint poses based on their
semantic labels, parent-child relations, and geometries. For
example, a microwave door should be connected to its base
with a revolute joint, which is usually located at the rim of
its base. Fig. 3 presents a complete example of estimating
the kinematic relations among table parts.

C. Spatial refinement among parts

We can further perform a refinement process to adjust
transformations in J so that parts forming parent-child pairs
are better aligned. This step reduces penetration between
parts.

The spatial refinement algorithm, detailed in Alg. 1,
performs refinements between parts in a top-down man-
ner, given the input parse tree ptp of an object, to avoid
conflicts. The function getEdgeTransform retrieves the
relative transformation Tp,c from the parse tree. Then,
getAlignedPlanes pairwise compares surface planes in

Fig. 3: Kinematic relation estimation among parts. (a) The set
of primitive shapes that best match the part entities of a table.
(b) Based on the largest contact score Cont

`

U i
p, U

j
c

˘

between
every pair of parts (indicated by the edge’s weight), the most
probable connectivity between parts can be found by computing
the maximum directed spanning tree, i.e., the red edges. (c) The
computed kinematic relations among the parts from parent to child.

vp and vc, and selects roughly-aligned normal vectors of
planes for downstream transformation refinement. Next, the
function refineTF refines the rotation of vc by computing
a translation-free refinement transformation T r

c that aligns
a set of normal vectors Xc to another set Xp. Finally,
updateEdgeTransform makes necessary updates to ele-
ments in ptp (i.e., Tp,c in J ) using the refined transformation.

The optimization problem in refineTF is formulated as:

T˚
“ argmin

TPSEp3q
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u
p
i PXp,u

c
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i ´up

i ||
2
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ȷ

,
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where R3ˆ3 is a rotation matrix, up
i and uc

i are a cor-
respondent pair of normal vectors close to each other in
direction. This optimization problem is equivalent to a point
set registration problem, for which we find the optimal
solution using the Kabsch algorithm [37].

Finally, we combine the part-based representation ptp for
all objects into a single contact graph cg of the scene.
Following Han et al. [8, 9], we build object entity nodes and
estimate the inter-object supporting and proximal relations.
Then, we refine the pose of each whole object based on the
supporting relations. The resulting cg effectively organizes
parts of all objects in the scene with kinematic information
and can be converted into a kinematic tree in URDF format
to directly support robot interactions.

IV. EXPERIMENTS

Experiments demonstrate that our system successfully
reconstructs part-level fine-grained interactive scenes from
partial scans, yielding more details of the observed scenes
compared with the baseline [9] that reconstructs scenes with
object-level CAD replacement.

Dataset augmentation: Due to the lack of ground-
truth object geometries and part segmentation in ScanNet, we
augment the dataset with the information of the CAD models
in PartNet [24] based on the annotations in Scan2CAD [38].
The kinematic joints of articulated objects are further ac-



Algorithm 1: Spatial refinement among parts
Input : a part-level parse tree ptp

Output: ptp with refined transformations
1 q ÐQueuepq

// add children of root of pt to queue q
2 foreach vc P ptp.root.children do
3 q.pushpvcq
4 while q is not empty do
5 vc Ð q.poppq
6 vp Ð vc.parent

// get transformation from vp to vc
7 Tpc Ð ptp.getEdgeTransformpvp, vcq

// find normal vectors of nearly aligned planes
8 Xp, Xc ÐgetAlignedPlanespvp, vcq

// compute the refinement transformation of vc
9 T r

c ÐrefineTFpXc, Xpq
// update the transformation from vp to vc

10 Tpc ÐTpcT
r
c

// update ptp with the refined transformation
11 ptp.updateEdgeTransformpvp, vc, Tpcq

// add children of vc to queue q
12 foreach vcc P vc.children do
13 q.pushpvccq

14 return ptp

quired from PartNet-Mobility [39]. Fig. 4a shows some
examples of augmented object models in ScanNet.

Implementation details: To detect the 3D objects
from the point cloud of a scanned scene, we adopt the
MLCVNet [40] as the front end of our system, which outputs
a 3D bounding box for each detected object. This model
was pre-trained on the ScanNet dataset following the same
train/test split described in Xie et al. [40]. After retrieving
the object point cloud inside the bounding box, we used
StructureNet [41] to decompose the object into parts, which
incorporated point cloud completion and outlier removal
during the decomposition process. Of note, our system is
modularized for future integration of more powerful 3D
detection/completion models.

A. Part-level CAD replacement from partial 3D scan

Protocols: We evaluate our part-level CAD replace-
ment against a baseline that replaces interactive CADs at the
object level [9] based on two criteria, geometric similarity
and plausibility of kinematic estimation. The evaluations
were conducted using the synthetic scans from SceneNN [42]
and real-world scans from ScanNet [43]. Specifically, we
picked 7 scenes in SceneNN that were used in the base-
line [9] and 8 scenes from ScanNet for the evaluations.

Geometric similarity: We use Chamfer distance and
intersection over union (IoU) metrics to quantitatively eval-
uate the reconstruction results. Chamfer distance measures
the point-wise distance between the surface structures of the
reconstructed objects and the ground-truth scans, indicating
their overall geometric similarity. IoU reflects how well the

(a) Augmented object models in ScanNet

(b) Assembled objects from primitive shapes
Fig. 4: Examples of augmented objects in ScanNet. (a) Incom-
plete objects in ScanNet (top) are augmented by corresponding ob-
jects in PartNet with part segmentation (bottom). (b) Objects could
be assembled from primitive shapes in terms of part segmentation.

reconstructed objects align with the ground-truth objects in
terms of poses and sizes. Objects are normalized to a unit
box for Chamfer distance computation, and replaced objects
are voxelized into a 323 grid for comparison with the ground-
truth voxel grid for IoU.

There were three types of input scans studied in evalu-
ations: original RGB-D scans (original), scans with point
cloud completion and part decomposition (completed), and
annotated scans in the augmented dataset that serve as the
ground-truth (annotation). Our method was not evaluated on
the original scans as they lack part-level information. Also,
sequences in the SceneNN dataset cannot be augmented
as annotation scans; thus, they are not evaluated in the
corresponding setup either.

The results are summarized in Tab. I. Looking at the
original and completed groups, our part-based method out-
performs the baseline with lower Chamfer distance and
higher IoU for most sequences. This indicates the effec-
tiveness of part-level CAD replacement for reconstructing
interactive scenes and the importance of unitizing a point
cloud completion model to handle noisy and incomplete
scans. On the other hand, reconstructions from augmented
scans with object part segmentation (see Fig. 4b for some
examples) are significantly improved (completed vs. anno-
tation groups), suggesting that perception noise remains a
primary challenge.

Kinematic structure of object parts: Evaluating the
plausibility of the estimated kinematic structure of object
parts is challenging due to its ambiguity. The same object
can be represented by different kinematic structures (see
Fig. 5a). To address this, we manually annotate the kinematic
structures of different objects. For each pair of parts in an
object, we connect them with an undirected edge if we
believe there is a contact relation between them. We use
the mean average precision (mAP) metric to measure the
alignment between the human-annotated kinematic structure
and the estimated structure based on the undirected contact
relations between parts (see Fig. 3b). The mAP metric sum-
marizes how accurately the relations between parts (edges)
are predicted.

Tab. II summarizes the results. Our method successfully
estimates the kinematic structures of 5 object categories
with high articulation, achieving mAP values close to 1.0,
indicating a nearly perfect match.



TABLE I: Quantitative comparison of geometric similarity using Chamfer distance (Cdist, the lower the better) and IoU (the
higher the better) Bold values indicate the best results between object-level baseline [9] and our part-level CAD replacement using
original and completed inputs, while underlined values indicate the best results using the annotated inputs.

CAD input SceneNN seq. ID ScanNet seq. ID

replacement format 011 030 061 078 086 096 223 0002 0003 0092 0157 0215 0335 0560 0640

C
di

st
.

original 0.189 0.759 0.431 0.634 0.588 0.508 0.462 0.573 0.776 0.392 0.559 0.379 0.604 0.329 0.752
object-level completed 0.329 0.378 0.483 0.413 0.601 0.329 0.619 0.580 0.710 0.321 0.554 0.256 0.663 0.307 0.651

annotation - - - - - - - 0.416 0.590 0.282 0.321 0.143 0.519 0.322 0.554

part-level completed 0.205 0.207 0.310 0.187 0.210 0.177 0.169 0.202 0.163 0.216 0.239 0.192 0.174 0.190 0.183
annotation - - - - - - - 0.101 0.119 0.092 0.087 0.076 0.086 0.098 0.089

Io
U

original 0.109 0.034 0.063 0.028 0.042 0.047 0.021 0.021 0.013 0.034 0.028 0.033 0.021 0.101 0.012
object-level completed 0.030 0.034 0.087 0.033 0.016 0.052 0.040 0.014 0.076 0.128 0.027 0.065 0.017 0.057 0.018

annotation - - - - - - - 0.056 0.100 0.116 0.170 0.196 0.067 0.133 0.119

part-level completed 0.125 0.118 0.215 0.157 0.156 0.134 0.113 0.191 0.224 0.131 0.089 0.192 0.179 0.159 0.190
annotation - - - - - - - 0.383 0.540 0.478 0.665 0.361 0.548 0.467 0.614

TABLE II: mAP of the estimated kinematic structures among
object parts.

Category Chair Table Microwave Cabinet Bed

mAP 0.9247 0.8292 0.9741 0.9592 0.9785
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Fig. 5: Evaluation of kinematic relations. (a) Different kinematic
trees represent the parts of a table. (b) One error in kinematic
structure estimation results in undesired articulation.

Discussions: The results in Tab. I provide an indirect
assessment of the kinematic transformation among parts,
while Tab. II verifies the accuracy of estimating their parent-
child relations. Although the results appear promising indi-
vidually, the complex nature of kinematic relations means
that even a small error can lead to significant issues. Fig. 5
showcases some typical cases, highlighting the ongoing
challenge of estimating kinematic relations.

B. Interactive scene reconstruction

Fig. 6 provides a qualitative comparison of interactive
scene reconstructions from ScanNet using object-level [9]
and part-level (ours) approaches. The reconstructed scenes
enable robot TAMP by leveraging the encoded kinematic
relations. Our method achieves a more precise reconstruction
(Fig. 6c) compared to the baseline [9] (Fig. 6b), as indicated
by the ground-truth segmentation of the 3D scans (Fig. 6a).

We highlight successful and failed samples in Fig. 6d to
better understand our method’s performance. Failures often
occur due to outliers in the part decomposition module,
leading to incorrect part replacement and alignment, or when
the completion module struggles with overly incomplete
input point clouds (e.g., a single surface of a fridge) due
to the limited information available. Many of these failure
cases stem from perceptual limitations when dealing with
unobserved or partially observed environments [44].

Furthermore, we demonstrate that the reconstructed in-
teractive scenes can be converted to URDF and imported

into ROS for robot-scene interactions (Fig. 6e). The resulting
contact graph containing object part geometry and kinematic
relations acts as a bridge between the robot’s scene percep-
tion, understanding, and TAMP [11, 21].

V. CONCLUSION AND DISCUSSION

In this work, we developed a system for reconstructing
interactive scenes by replacing object point clouds with CAD
models that enable robot interactions. In contrast to previous
approaches focused on object-level CAD replacement [8, 9],
our system takes a part-level approach by decomposing
objects and aligning primitive shapes to them. We achieved
a more detailed and precise representation of the scene by
estimating the kinematic relations between adjacent parts,
including joint types (fixed, prismatic, or revolute) and
parameters.

To handle noisy and partial real scans, our system incor-
porates a point cloud completion module to recover observed
object parts before performing CAD replacement. The esti-
mated kinematics of objects and the scene are aggregated
and composed into a graph-based representation, which can
be converted to a URDF. This representation allows for
reconstructing interactive scenes that closely match the actual
scenes, providing a “mental space” [44, 45] for robots to en-
gage in TAMP and anticipate action effects before execution.
This capability is crucial for the success of robots in long-
horizon sequential tasks.

Moreover, our system has potential applications beyond
interactive scene reconstruction. It can be utilized to digitize
real environments for virtual reality, creating in-situ simu-
lations for robot planning and training [46, 47], and facili-
tate the understanding of human-object interactions [48–50],
among other downstream applications.

In conclusion, our part-level CAD replacement system
significantly enhances the reconstruction of interactive scenes
by capturing finer details and improving precision. The
resulting scenes serve as a foundation for robot cognition
and planning, enabling robots to navigate complex tasks suc-
cessfully. Additionally, the versatility of our system opens up
possibilities for various applications in virtual reality, robot
planning, training, and human-object interaction studies.
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Fig. 6: Qualitative comparisons of reconstructed interactive scenes at the object level [9] and the part level (ours). (a) Ground-truth
part-level segmentation of 7 real-world scans augmented from ScanNet [43]. (b) Object-level CAD replacement preserves object semantics
and overall dimensions but fails to reflect geometries accurately. (c) Our part-level CAD replacement better reflects object geometries
by assembling objects from primitive shapes. (d) Successful and failed part replacements/assemblies are highlighted with blue and red
circles, respectively. (e) The resulting interactive scenes enable fine-grained robot interactions using TAMP).

Limitations and future work: Reconstructing interac-
tive scenes, particularly at the part level, poses significant
challenges that require substantial research efforts. We ac-
knowledge the following limitations and identify potential
avenues for future work.

First, real-world indoor scenes are inherently complex and
are often subject to clustering, occlusions, and sensor noise.
Even with scan completion methods, 2.5D RGB-D scans
may still be noisy or incomplete, hindering a comprehen-
sive understanding of the scene. Addressing this limitation
requires further advancements in scan completion techniques
to improve the quality of the input data.

Second, estimating an object’s kinematics solely from
static observations during the reconstruction process is in-
herently ambiguous. Existing approaches often rely on ob-
ject motion cues to disambiguate kinematic relationships.
However, these methods may struggle to scale effectively in
larger-scale real scenes. Future research should explore novel
strategies for resolving kinematic ambiguity, potentially by
leveraging both static and dynamic cues or exploiting tactile
information [51] to enhance the overall accuracy.

Third, our current system treats the interior structure
of contained spaces (e.g., the space inside a cabinet) as
a solid due to its unobservable nature. Human cognition
excels at filling in perceptual gaps, but our system lacks this
capability. Building upon our presented system, future work
could integrate advanced perception and reasoning models to
endow robots with similar cognitive abilities, enabling them
to operate better within complex environments. Additionally,

it would be valuable to develop methods that allow robots
to actively probe the environment and refine reconstructed
scenes, leading to more robust and detailed representations.
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