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Abstract— Cutting objects into desired fragments is chal-
lenging for robots due to the spatially unstructured nature of
fragments and the complex one-to-many object fragmentation
caused by actions. We present a novel approach to model
object fragmentation using an attributed stochastic grammar.
This grammar abstracts fragment states as node variables and
captures causal transitions in object fragmentation through
production rules. We devise a probabilistic framework to
learn this grammar from human demonstrations. The planning
process for object cutting involves inferring an optimal parse
tree of desired fragments using the learned grammar, with parse
tree productions corresponding to cutting actions. We employ
Monte Carlo Tree Search (MCTS) to efficiently approximate the
optimal parse tree and generate a sequence of executable cutting
actions. The experiments demonstrate the efficacy in planning
for object-cutting tasks, both in simulation and on a physical
robot. The proposed approach outperforms several baselines by
demonstrating superior generalization to novel setups, thanks
to the compositionality of the grammar model.

I. INTRODUCTION

Representing object states and understanding how they
change with actions are fundamental for robots to manipulate
the physical world. In the literature, the primary focus is
restricted to rigid objects whose states can only be altered
spatially, represented with reconstructed 3D geometry [1–
3], estimated 6D poses [4, 5], semantic keypoints [6, 7], or
extracted appearance features [8, 9]. Recently, articulated ob-
ject understanding in terms of kinematics estimation [10, 11]
and part-level object modeling [12–14], and deformable
object understanding empowered by physics-based simula-
tion [15, 16] further expand a robot’s manipulation capa-
bilities towards handling drastic appearance and geometry
changes of objects. However, either a rigid, articulated, or
deformable object can be treated as a single whole object
or a fixed collection of rigid parts when manipulated by a
robot; modeling objects with topology changes, i.e., object
fragmentation in a cutting task, is still largely unexplored.

The challenges of modeling object fragmentation are
twofold: (i) An object or its fragments exhibit consider-
able variation in terms of their configurations (i.e., the
layout, fragment number, pose, and shape of each frag-
ment) during fragmentation. (ii) An object fragmentation
process intrinsically involves one-to-many transitions (i.e.,
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Fig. 1: Planning for object cutting with a stochastic grammar
of object fragmentation. The grammar reveals the underlying
fluent space of object fragmentation and captures causal transitions
in a compositional manner with production rules. An observed
fragmentation process is represented as a parse tree derived from
the grammar; planning for object cutting is to infer an optimal parse
tree that describes the desired fragmentation. Observing cutting a
carrot could support planning actions for cutting a potato into the
same by sharing the production rule c3 → c5c5.

an object breaking into multiple fragments), and there are
many ways an object might be potentially fragmented. As a
result, it is nontrivial to find a proper state representation,
hindering the direct employment of methods such as neural
networks [9, 17], probabilistic graphical models [18, 19],
symbolic logic [20, 21], etc., to model such complex causal
transitions during fragmentation. To overcome these chal-
lenges, a desired state representation should be reconfig-
urable and extendable to account for the drastic variations in
object fragmentation while being abstract enough to reduce
the number of possible transitions for efficient planning.

In this paper, based on the stochastic grammar model,
we develop a fluent notation [22] to represent the state of
an object–or that of its fragments–during cutting and derive
a fluent space to describe the possible fragmentation (i.e.,
the states and their causal transitions). Being successful in
modeling scenes [23–25] and dynamic events [19, 26, 27],
a stochastic grammar consists of a set of production rules
that generate terminal or non-terminal variables from existing
non-terminal ones, akin to the process of an object breaking
into pieces—the original object generates newly appeared
fragments. Specifically, the grammar itself incorporates all
possible states an object may finally be as fragmentation
repeats, and the production rules of the grammar indicate all
valid one-to-many transitions. Together, they form the fluent
space of object cutting. Furthermore, each parse tree derived
from the grammar reflects a specific fragmentation process



produced by a sequence of cutting actions, whose terminal
nodes correspond to fragments in the resulting configuration
and collectively define the resulting fluent.

Fig. 1 presents the proposed stochastic grammar that
models the object fragmentation process of cutting a carrot
into chunks and supports planning cutting actions for a novel
situation of cutting a potato into the same. We extract shape
features for fragments and cluster them to obtain a much
smaller set of variables to represent fluents and to induce
production rules that describe the causal transitions between
fluents. Crucially, the cluster number is determined such that
the resulting grammar seeks to reduce its complexity by hav-
ing fewer types of variables while preserving the necessary
discriminability of fragments for consistency of transitions.
More importantly, grammar’s recursive and compositional
nature allows us to model the fluent and fluent space com-
pactly and flexibly and achieve better generalization.

In the experiments, we collect a dataset of human cutting
demonstrations in simulation, from which we induce the
grammar model and learn to generate action parameters for
cutting. During the test phase, we demonstrate the efficacy
of the proposed grammar-based representation and planning
method on a series of object-cutting tasks, including those
under novel setups. A preliminary real robot experiment also
shows that our method can be applied to real-world object-
cutting scenarios.

A. Related Work

Planning a sequence of actions to alter objects’ states
towards a goal is a long-standing problem in robotics and
artificial intelligence. Task planning [28] efficiently searches
for a sequence of discrete actions to reach the goal based on a
known planning domain, usually defined in Planning Domain
Definition Language (PDDL) [29]. While this approach pro-
vides a general and practical solution, it is limited to a fixed
number of objects and relies on known transition models and
hand-crafted state and action abstractions [21, 30–32].

An alternative approach is Model-based Reinforcement
Learning, which effectively learns a transition model from
interaction data, potentially with a learned state represen-
tation [17, 33, 34]. While this method achieves impressive
performance, it requires extensive exploration and may not
generalize well in complex scenarios.

We adopt an approach inspired by Task and Motion Plan-
ning (TAMP), accommodating a changing number of objects,
while learning a stochastic grammar model to represent an
abstract planning domain for object cutting. Notably, the
production rules in the grammar model effectively bridge the
gap between planning discrete cutting actions and generating
continuous action parameters (see Sec. III-C).

B. Overview

The remainder of this paper is organized as follows. Sec. II
formally models the object fragmentation process in object
cutting using stochastic grammar and provides insights into
learning such a model from human demonstrations. Sec. III
formulates the plan-to-cut problem as probabilistic inference,

leveraging the learned grammar model, and presents an
algorithm for online planning. Furthermore, in Sec. IV, we
demonstrate the efficacy of our method through a series of
experiments, including novel scenarios. Finally, we conclude
the paper and discuss future research directions in Sec. V.

II. MODELING OBJECT FRAGMENTATION WITH AN
ATTRIBUTED STOCHASTIC GRAMMAR

An object fragmentation process ro : Ωo →Ωo transforms
a set of object fragments Ipre ∈Ωo into another set of
fragments Ipost ∈Ωo, where I = {oi} represents the config-
uration of the object fragments, 1≤ |Ipre| ≤ |Ipost|, and oi
represents an initial whole object or a fragment by its shape
(e.g., point cloud), pose, etc. Considering the complex nature
of Ωo, where each fragment could vary in shape, we instead
regard some fragments oi ∈I as the same type cj ∈C via
clustering, where S= {cj} defines an object fluent of the
configuration I. As such, we obtain a simplified fluent space
Ωs = {S} that depicts a fragmentation process rs : Ωs →Ωs

with better abstraction.

A. Grammar representation of object fragmentation

We adopt an attributed stochastic grammar [35] to model
causal transitions in object fragmentation, where terminal
variables with their attributes represent the configuration of
fragments, and production rules capture the valid causal
transitions that an object breaks into multiple fragments.
Formally, the attributed stochastic grammar is defined by a
5-tuple G= ⟨VNT , VT , vS , R,P⟩, where vNT ∈VNT is a non-
terminal variable that denotes a fragment type c∈C, vT ∈VT

is a terminal variable that denotes a fragment type c∈C
with pose q ∈SE(3) and shape feature z as its attributes,
vS is the start symbol, P is the probability of the production
rules defined over the grammar, and ri ∈R is the production
rule ri :VNT → (VNT ∪VT )

∗, where (·)∗ is the Kleene star
operation, enabling a production rule to describe an arbitrary
fragmentation within the domain of VNT ∪VT . A fluent S
is defined by terminals of a parse tree pt generated from
G, and the fluent space is defined by Ωs =L(G), where
L(G) represents the set of all possible fluents generated by
G. Intuitively, a parse tree pt derived from G represents a
plausible fragmentation sequence: the collection of termi-
nals corresponds to the resulting fragments, and the non-
terminals indicate the intermediate fragments in the past that
subsequently fragment into the final configuration due to the
sequence of applied productions (i.e., cutting actions).

B. Grammar induction from human demonstrations

We propose to learn the stochastic grammar from object-
cutting sequences generated by human demonstrations;
please refer to Sec. IV-A for details of data collection.

Corpus generation: We extract a shape feature z for
an object or fragment oi ∈I using a pre-trained point cloud
encoder (see Sec. III-D), and cluster all features {z} into
k fragment types {c}. Then a corpus Dk

c =
{
cpre
i →{cpost

i,j }
}

is obtained by recording the fragment type before and after
each cutting action.
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Fig. 2: An illustration of the inference process to obtain an optimal parse tree pt∗ through MCTS. (a) Given fragment point clouds
in the current or goal configuration, we extract a shape feature for each fragment with a pre-trained point cloud encoder and process
it with an MLP to classify the fragment type p(c|z) (the vector shows probability in greyscale). (b) We show an example of a Monte
Carlo search tree where the state of a search node is a parse tree derived from the grammar. The expansion of a search node is to apply
production rules to its parse tree. The yellow region H(It) is a set of search nodes whose states (i.e., parse trees) are sampled from
fragments in It according to p(c|z). (c-d) To evaluate rollout results, we find the best assignment that grounds each terminal node to a
fragment in Ig . The dotted lines in (c) represent an optimal assignment that maximizes the shape matching likelihood in Eq. (5), which
is further refined to maximize the layout grouping likelihood in Eq. (6), shown in solid lines in (d).

A critical question is how to determine the proper number
of fragment types k to reduce grammar complexity while
maintaining sufficient discriminability among fragments. We
solve it by balancing the data likelihood and model complex-
ity in grammar induction; see the details below.

Grammar induction: Given corpus Dk
c , we use

Maximum a Posteriori (MAP) estimation to induce an opti-
mal grammar:

G∗ = argmax
Gk

p(Dk
c | Gk) p(Gk)

= argmax
Gk

∏
(αi→βi)∈Dk

c

p(αi →βi | Gk)

︸ ︷︷ ︸
data likelihood

· eγ|G
k|

︸ ︷︷ ︸
model prior

, (1)

where αi →βi is the i-th production in Dk
c , γ a scalar

coefficient, |Gk| the model size only depending on k, and
p(αi →βi | G) the branching probability of the production
αi →βi defined in P.

We adopt an iterative non-parametric clustering approach,
similar to DP-means [36], to solve for G∗ in Eq. (1) by
alternating two steps: search for a better k, and estimate the
best production rules. With a fixed k, the best production
rule probability aligns with the frequency of each alternative
choice [23]:

p(α→βi)=#(α→βi)/

n(α)∑
j=1

#(α→βj), (2)

where #(α→β) is the number of productions following
α→β in the corpus, and n(α) is the number of productions
whose left-side (the non-terminals) is α. For ease of planning
with G∗, we also fit a classifier on the clustered fragments
to model p(c|z), the probability of a fragment’s type c given
its shape feature z.

III. PLANNING FOR OBJECT CUTTING

We aim to plan a sequence of cutting actions to achieve
the goal configuration Ig from an initial configuration of
fragments It. Each cutting action involves cutting one object
or fragment using a 3D cutting plane represented as π=
[nT , d]T ∈R4, where ‖n‖2 =1 is a unit plane normal vector,
and nT ·v+d=0 represents the cutting plane constraint.
We represent cutting planes in the canonical frame of the
fragment to cut.

The planning problem is transformed into inferring an
optimal parse tree of desired fragments given the learned
grammar model that captures all possible causal transitions
in object cutting. The planning is solved online using MCTS,
detailed in Sec. III-B. Each production in the parse tree
corresponds to a cutting action, and given the inferred parse
tree, we generate the cutting plane π for each action with a
sampling-based method (see Sec. III-C).

A. The posterior probability of parse trees

We derive the posterior probability of a parse tree pt,
representing a fragmentation sequence or a plan of cutting
actions, given the goal configuration Ig and the grammar G.
For each fragment in Ig , we extract shape feature z and pose
q, resulting in Ig

Z = {zi} and Ig
Q = {qi}.

The posterior probability is given by:

p(pt | Ig,G)∝ p(pt | G)︸ ︷︷ ︸
grammar

prior

p(Ig
Z | pt)︸ ︷︷ ︸

shape matching
likelihood

p(Ig
Q | pt)︸ ︷︷ ︸

layout grouping
likelihood

, (3)

where the first term is the prior probability of the parse tree
pt given G, and the second and third terms describe the
likelihood of observing Ig given pt in terms of fragment
shape and pose. The overall posterior probability measures
the alignment between pt generated by G and the goal
configuration Ig .



Grammar prior: The grammar prior captures possible
causal transitions of object or fragment types. It is based on
the learned production rules and branching probability:

p(pt | G)=
∏

(αi→βi)∈Rpt

p(αi →βi | G), (4)

where Rpt is the set of productions in the parse tree pt, and
p(αi →βi | G) is the conditional probability of choosing the
production αi →βi given the non-terminal node αi.

Shape matching likelihood: The shape matching term
evaluates the alignment between pt and the goal configura-
tion Ig in terms of fragment geometry:

p(Ig
Z | pt)=

N∏
i=1

p(zi | ci)∝
N∏
i=1

p(ci | zi) p(zi), (5)

where ci is the fragment type of the i-th terminal node in
pt, zi is the shape feature of the corresponding fragment,
and N is the number of fragments in Ig

Z . The prior p(zi) is
a normal distribution fitted on the train set, and p(ci|zi) is
obtained from the classifier based on the shape feature zi.

Layout grouping likelihood: The layout grouping term
measures the alignment between pt and Ig in terms of
fragment layout:

p(Ig
Q | pt)=

∏
(αi→βi)∈Rpt

p (βi | αi →βi)

=
∏

(αi→βi)∈Rpt

∏
v
βi
j ∈βi

p
(
vβi
j | αi →βi

)
,

(6)

where αi →βi is the i-th production in Rpt, αi is the
non-terminal node being expanded, and βi represents the
produced nodes from the rule. vβi

j is the j-th produced
node in βi, and p(vβi

j |αi →βi) gives the probability that
production αi →βi produces node vβi

j .
Assuming that the closer the fragments, the more likely

they come from the same piece, we define the distribution
p(vβi

j | αi →βi) by an energy function:

p
(
vβi
j | αi →βi

)
=

1

Z
exp

(
−dist(qαi , qβi

j )
)
, (7)

where Z is the partition function, qβi

j the averaged pose of
fragments in descendants under the node vβi

j , qαi the aver-
aged poses of descendants in αi, and dist(·, ·) the distance
function that measures the distance between two poses. In
practice, we calculate the Euclidean distance between the po-
sitions of two nodes and adopt dynamic programming when
computing qαi and qβi

j to avoid redundant computations.

B. Inference of the optimal parse tree

Given the current configuration It, we aim to plan an
optimal sequence of cutting actions that leads to a desired
configuration Ig . We formulate the planning process as
inferring the optimal parse tree via an MAP estimate:

pt∗ = argmax
pt∈H(It)

p(pt | Ig,G)

= argmax
pt∈H(It)

p(pt | G) p(Ig
Z | pt,G) p(Ig

Q | pt,G),
(8)

where H(It) is a set of parse trees whose expansions from
the start variable are sampled from p(c|z) for each fragment
in It after extracting shape feature z.

Since the computation of pt∗ in Eq. (8) is intractable, we
approximate pt∗ via Monte Carlo Tree Search (MCTS) as
shown in Fig. 2b. Initially, the algorithm starts with the root
node of the search tree, which contains the start variable
vS of the grammar. The expansion and simulation step of
MCTS is a process of applying feasible production rules (i.e.,
possible causal transitions) on the parse tree of the search
node, and the rollout results in each round are evaluated
by measuring the objective function in Eq. (8). During the
backpropagation step, we use the objective function value as
the score to update the nodes on the path from the root to
the rollout result. Finally, the best rollout result among all
rounds in MCTS will be selected as pt∗.

To evaluate the objective function, we need to align every
terminal node with a unique fragment in Ig , as described in
Sec. III-A. Hence, for the i-th round of rollout, we compute
an optimal assignment function f∗

i :VT →O that grounds
each terminal node vT in pti to a unique fragment o in
Ig , such that the resulting parse tree ptf

∗

i maximizes the
objective in Eq. (8) as well. Since the grammar prior term
is irrelevant to the assignment, we have:

f∗ =argmax
f

p(Ig
Q | ptfi ) p(I

g
Z | ptfi ), (9)

where ptfi denotes the parse tree whose terminal nodes are
grounded to fragments in Ig by the assignment function f .

Since directly computing f∗ is intractable (factorial to the
number of fragments), we obtain an approximate solution in
two steps: (i) Compute an assignment function f init that
maximizes the shape matching likelihood p(Ig

Z | ptf ) in
Eq. (5); see the dotted lines in Fig. 2c. (ii) Refine f init into
f∗ that maximizes the layout grouping likelihood p(Ig

Q | ptf )
in Eq. (6) while conserving the optimality obtained in the
previous step; see solid lines in Fig. 2d.

The first step formulates a linear assignment problem
that can be solved in polynomial time using the Hungarian
algorithm [37]. Then we adopt the simulated annealing
algorithm [38] to maximize p(Ig

Q | ptf ), where we randomly
swap the matched terminal nodes of two fragments. As we do
not want to violate the established optimality of p(Ig

Z | ptf ),
we only swap terminal nodes with the same fragment type.

C. Cutting plane generation

With an inferred optimal parse tree whose productions
correspond to cutting actions, we generate cutting planes to
make the actions executable. We model the cutting plane
π of an action as a Gaussian Mixture Model (Gaussian
Mixture Model (GMM)) with its parameters depending on
the production rule r and the shape feature z of the fragment
to cut. The GMM parameters are regressed using a two-
layer Mixture Density Network [39], learned from human
demonstration data. During planning, we compute GMM
parameters with a forward pass of the neural network and
sample cutting planes from the corresponding GMMs for



N = 1, M = 1 N = 1, M = 2 N = 2, M = 1 N = 2, M = 2 N = 3, M = 4

Fig. 3: Examples of collected data with different levels of task complexity. N is the initial number of objects, and M the number of
fragment categories in the goal configurations. The bottom right corner of each subfigure shows the initial configuration.

execution. We generate cutting planes for each production
separately (i.e., cut one object or fragment at a time).

D. Implementation details

We define a consistent canonical frame for each fragment
to match and distinguish between object fragments presented
in different poses. The canonical frame is defined on a shape
so that its projection along the z-axis is maximized, its
projection along the x-axis is minimized, and its volume
in the first octant is the largest. In practice, we compute
the canonical frame of a fragment by principal component
analysis.

We use a 17-dimensional vector z=(zshape, zscale) as the
shape feature, where zshape ∈R16 encodes the normalized
shape represented in its canonical frame with a point cloud
encoder. The scalar zscale ∈R represents the scale. We adopt
a naive encoder that processes all point coordinates and nor-
mals with a shared Multi-layer Perceptron (MLP) followed
by an average pooling layer; the encoder is trained on all
fragments in the train set of human cutting data following
IMNet [40].

IV. SIMULATIONS AND EXPERIMENTS

We developed an object-cutting simulator based on Bul-
letPhysics [41] to collect human demonstrations and test our
method and baselines. Specifically, we implemented a Slice
function in BulletPhysics that slices an object with a 3D
plane. All methods were trained and evaluated in the simula-
tor. Furthermore, we demonstrated that our proposed model,
trained in the simulation environment, can effectively handle
real-world object-cutting tasks a physical robot executes.

A. Data preparation

To collect human demonstrations, we asked human sub-
jects to cut virtual objects presented in the simulator into
one of the four fragment categories (i.e., chunks, slices,
cubes, and strips) or their combinations, using an intuitive
Graphical User Interface (GUI) offered by the simulator.
A cutting action is applied as a human subject specifies
a 3D cutting plane by clicking two points on the GUI.
We recorded each trail of demonstration as a sequence of
fragment configurations and cutting actions; the ground-
truth 3D geometry of each fragment and its pose can be
directly retrieved from the simulator. A total of 110 object-
cutting trails were collected and partitioned according to the

initial number of objects N and the number of fragment
categories in the goal configurations M ; see Fig. 3 for some
examples. We split the collected data, using a subset (40%)
of N =1,M =1 as the train set and test on the remaining
trails (i.e., the rest of partition N =1,M =1 and partitions
N > 1,M > 1).

B. Experimental setup

We test our method against various baselines to compute
a sequence of cutting actions that reach a goal configuration
Ig from a current fragment configuration It, retrieved from
test set trials. Instead of planning and executing all actions at
once, we execute one action at a time and re-plan from the
resultant configuration. This process repeats until we achieve
the target number of fragments in the goal configuration.
In our approach, we randomly select one production and
execute the corresponding cutting action when multiple pro-
ductions are available from the derived parse tree. Below,
we describe the baseline methods and evaluation metrics that
measure goal achievement.

1) Baselines: Given the success of learning-to-plan meth-
ods in handling complex state spaces, we design two base-
lines using a state embedding s, obtained by projecting
shape features with an MLP followed by sum-pooling: (i)
Behavioral Cloning (BC): It learns a goal-directed policy
with a two-layer MLP to mimic human actions in collected
demonstrations. The policy predicts the cutting probability
per fragment based on its shape feature zi, current state
embedding s, and goal state embedding sg . The fragment
to be cut is sampled based on the obtained probability, and
cutting planes are sampled from a learned GMM conditioned
on zi and sg . (ii) Offline Deep Q Network (QNet):
This model-free reinforcement learning approach is trained
on logged data. We approximate a goal-conditioned action
value function (Q function) using a two-layer MLP. During
training, we assign sparse rewards to state-action pairs that
achieve the goal, where an action is to choose a fragment to
cut. Since the train set only contains positive demonstrations,
we add a large margin loss term to encourage assigning a
higher value to actions seen during training [42]. At test time,
we select the best fragment to cut according to the Q function
and sample a cutting plane identical to BC. Furthermore,
we recruit (iii) Human participants to perform cutting tasks
under the same setup, which serves as the performance upper
bound.



TABLE I: Quantitative results of planning for object cutting under various task setups. We evaluate all methods using the best-
matched Intersection over Union (IoU) and Human Rating (HR) on test sets with different N,M combinations, averaged across five runs;
± denotes standard deviation.

Task Setup BC QNet Ours Human

IoU HR IoU HR IoU HR IoU HR

Seen N=1, M=1 0.37±0.11 2.19±1.07 0.40±0.16 2.14±1.21 0.58±0.08 4.32±0.77 0.57±0.03 4.48±0.96

Unseen

N=1, M=2 0.35±0.08 1.76±0.87 0.32±0.12 1.95±0.87 0.49±0.06 3.60±1.02 0.62±0.07 4.86±0.35
N=2, M=1 0.44±0.08 1.64±0.65 0.34±0.16 1.19±0.39 0.56±0.03 3.69±0.89 0.62±0.09 4.83±0.37
N=2, M=2 0.42±0.03 2.07±0.86 0.29±0.09 1.24±0.43 0.52±0.04 3.74±0.90 0.56±0.04 4.79±0.56
N=2, M=3 0.38±0.03 1.73±0.99 0.28±0.09 1.52±0.92 0.52±0.03 3.21±0.86 0.60±0.04 4.81±0.55
N=3, M=4 0.38±0.04 1.57±0.62 0.22±0.08 1.26±0.49 0.52±0.02 3.21±0.86 0.56±0.04 4.81±0.55
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Fig. 4: Planning cutting actions. Qualitative results of planning cutting actions to achieve a desired set of fragments. Each row shows
sample results of different methods under specific task setups.

2) Evaluation metrics: Due to geometric similarities be-
tween two fragment configurations despite different layouts,
we design two metrics to evaluate how well the produced
fragments match the goal configuration: (i) Mean best-
matched IoU: This objective metric is the averaged IoU
between the best-matched fragment pairs (see Fig. 5 dotted
lines) in the produced final fragments and fragments in
the goal configuration. We compute best-matched fragment
pairs as a linear assignment problem using the Hungarian
algorithm [37] in polynomial time. (ii) Human Rating: We
recruit human participants to subjectively rate the fitness of
the produced fragments against the goal. The rating ranges
from 1 to 5 in discrete values, with higher scores indicating
a better match.

Fig. 5: An example of best-matched fragments for evaluation.
Each dotted line connects a pair of best-matched fragments. Since
the number of fragments is unbalanced between two sets of frag-
ments, some fragments in the larger set remain unmatched.

C. Simulated results

We present the results of our method and the baselines
under different test setups in Tab. I, and a qualitative
comparison in Fig. 4. Our method outperforms BC and
QNet in both objective and subjective metrics across all six
setups, demonstrating superior generalization capabilities in
scenarios involving more objects to cut (N > 1) and/or a
composition of fragment types in the goal (M > 1). While
BC performs on par with QNet in relatively simple task
instances (N =1,M =1), it outperforms QNet in most gen-
eralization setups. Our method excels in learning a valid
planning domain with a small amount of data and generaliz-
ing to novel task setups, thanks to the grammar model that
effectively abstracts the fluent space and represents causal
transitions in a compositional manner. The qualitative results
and superior human rating of our method further demonstrate
that the grammar models the fluents and causal transitions in
a semantically meaningful way, aligning well with humans’
mental abstraction of fragmenting objects.

D. Real-world robot experiment

We conduct a real robot experiment with a Kinova Gen 3
manipulator with a knife-like end-effector to cut an object
into desired fragments. The goal configuration is given as
fragment point clouds, while the robot observes a single point
cloud of the current configuration by fusing outputs from
two third-person-view depth cameras. The observed point
cloud is segmented to produce per-fragment point clouds
using a point cloud segmentation model [43] trained on the
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Fig. 6: Real-world object cutting experiment. Experiment on object cutting with a Kinova Gen 3 manipulator. The top-left figure
illustrates the environment setup, and examples of the robot cutting a carrot and a potato are shown. The sequence of actions applied and
the resulting fragments demonstrate a good alignment with the goal.

simulation dataset. We plan and execute a sequence of cutting
actions following Sec. III. The grammar and neural networks
are fully trained on simulated data as described in Sec. IV-C.

Fig. 6 presents the environment setup and keyframes of
the robot executing planned actions to cut a carrot and a
potato. The robot can generate meaningful cutting actions
and produce fragments well-aligned with the goal. The
experimental results demonstrate our method’s ability to
handle perception uncertainties and its potential in real-world
object-cutting tasks.

V. CONCLUSION

In this work, we introduced a stochastic grammar of object
fragmentation, which abstracts the state of fragments as
terminal variables and accommodates causal transitions in
object fragmentation through production rules. The proposed
representation is powerful for modeling causal transitions in
object fragmentation, enabling an agent to plan actions that
cut an object into desired fragments. The planning problem
is formulated as inferring an optimal parse tree of the
desired configuration, where terminal nodes are ground to the
produced final fragments and the productions indicate cutting
actions. Our method achieved remarkable performance in
planning for object-cutting tasks, even when applied to
novel test setups with significant variations compared to
the training set. Moreover, we conducted a preliminary real
robot experiment utilizing a model trained in simulation,
demonstrating the robustness of our method in the physical
world. This work introduces a new perspective on object
modeling and explores a new dimension of robot manipula-
tion capability.

Limitations: While our method effectively abstracts
the state space with fluents and models a simplified set of
causal transitions, it still has some limitations. One notable
limitation is the computational complexity of the MCTS
method, especially when the goal configuration involves a

large number of fragments, MCTS often requires consid-
erable time to arrive at an optimal solution. Integrating
Reinforcement Learning techniques with tree search, similar
to Alpha-Go [44], could be a potential avenue to address this
issue and further improve planning efficiency. Additionally,
our method only permits cutting a single object in its object-
centric frame. Extending the proposed approach to cut mul-
tiple objects simultaneously and incorporating interactions
between objects during cutting remain an open challenge for
future research.

Discussion: One of the key strengths of our approach
is the ability to generalize to unseen scenarios and handle
various cutting tasks with different numbers of objects and
fragment categories. The grammar model, representing frag-
ments as terminal variables and causal transitions through
productions, allows the agent to abstract the object’s state
and plan for actions accordingly. This enables our method
to effectively infer an optimal parse tree that guides the
cutting process toward the goal configuration. Moreover, our
approach is capable of learning the planning domain from a
relatively small amount of simulated data, which makes it a
practical and efficient solution for real-world object-cutting
tasks on a physical robot.

Furthermore, the real-world experiment conducted with a
Kinova Gen 3 manipulator showcased the applicability of
our method in a physical setting. The robot was able to
generate meaningful cutting actions and produce fragments
that aligned well with the desired configuration. However,
limitations in the modeling of complex contact dynamics
could introduce uncertainty in the execution phase. Address-
ing these challenges and achieving more precise execution in
real-world scenarios will be critical for practical deployment.
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