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Abstract— We design and develop a new shared Augmented
Reality (AR) workspace for Human-Robot Interaction (HRI),
which establishes a bi-directional communication between hu-
man agents and robots. In a prototype system, the shared AR
workspace enables a shared perception, so that a physical robot
not only perceives the virtual elements in its own view but
also infers the utility of the human agent—the cost needed to
perceive and interact in AR—by sensing the human agent’s
gaze and pose. Such a new HRI design also affords a shared
manipulation, wherein the physical robot can control and alter
virtual objects in AR as an active agent; crucially, a robot
can proactively interact with human agents, instead of purely
passively executing received commands. In experiments, we de-
sign a resource collection game that qualitatively demonstrates
how a robot perceives, processes, and manipulates in AR and
quantitatively evaluates the efficacy of HRI using the shared AR
workspace. We further discuss how the system can potentially
benefit future HRI studies that are otherwise challenging.

I. INTRODUCTION

Recent advance in Virtual Reality (VR) and Augmented
Reality (AR) has blurred the boundaries between the vir-
tual and the physical world, introducing a new dimension
for Human-Robot Interaction (HRI). With new dedicated
hardware [1], [2], [3], VR affords easy modifications of the
environment and its physical laws for HRI; it has already
facilitated various applications that are otherwise difficult
to conduct in the physical world, such as psychology stud-
ies [4], [5], [6] and AI agent training [7], [8], [9], [10].

In comparison, AR is not designed to alter the physical
laws. By overlaying symbolic/semantic information and vi-
sual aids as holograms, its existing applications primarily
focus on assistance in HRI, e.g., interfacing [11], [12],
[13], data visualization [14], [15], [16], robot control [17],
[18], and programming [19], [20]. Such a confined range of
applications hinders its functions in broader fields.

We argue such a deficiency is due to the current setting
adopted in prior AR work; we call it a active human, passive
robot paradigm, as illustrated by the red arrows in Fig. 1.
In such a paradigm, the virtual holograms displayed in AR
introduce asymmetric perceptions to humans and robots;
from two different views, the robot and human agents may
possess a different amount of information. This form of
information asymmetry prevents the robot from properly
assisting humans during collaborations. This paradigm also
heavily relies on a one-way communication channel, which
intrinsically comes with a significant limit: only human
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Fig. 1: A comparison between the existing AR systems and the
proposed shared AR workspace. Existing AR systems limits to
an active human, passive robot, one-way communication, wherein
a physical robot would only react to human commands via AR
devices without taking its own initiatives; see the red arrows. The
proposed shared AR workspace constructs an active human, active
robot, bi-directional communication channel that allows a robot to
perceive and proactively manipulate holograms as human agents do;
see green arrows. By offering shared perception and manipulation,
the proposed shared AR workspace affords more seamless HRI.

agents can initiate the communication channel, whereas a
robot can only passively execute the commands sent by hu-
mans, incapable of proactively manipulating and interacting
with the augmented and physical environment.

To overcome these issues, we introduce a new active
human, active robot paradigm and propose a shared AR
workspace, which affords shared perception and manipula-
tion for both human agents and robots; see Fig. 1:
1) Shared perception among human agents and robots. In

contrast to existing work in AR that only enhances human
agents’ understanding of robotic systems, the shared
AR workspace dispatches perceptual information of the
augmented environment to both human agents and robots
equivalently. By sharing the same augmented knowledge,
a robot can properly assist its human partner during HRI;
the robot can accomplish a Level 1 Visual Perspective
Taking (VPT1) by inferring if a human agent perceives
certain holograms and estimating associated costs.

2) Shared manipulation on AR holograms. In addition
to manipulating physical objects, shared AR workspace
endows a robot with the capability to manipulate holo-
grams proactively, in the same way as a human agent
does, which would instantly trigger the update of shared
perception. As a result, HRI in the shared AR workspace
permits a more seamless and harmonious collaboration.



(a) Robot Platform (c) Pose Detection

(b) Human User (d) Visualization (e) Shared Perception with Human Visual Cost (f) Shared Manipulation on Holograms

Laptop
Kinect v2

Lidar

TurtleBot 2

Microsoft
Hololens

Fig. 2: A prototype system that demonstrates the concept of shared AR workspace. (a) A mobile robot platform with an RGB-D
sensor and a Lidar for perception. (b) A human agent with an AR headset (Microsoft HoloLens). By calculating (c) the transformation
from the robot to the human, r

hT , by a 3D human pose detector and (d) the transformation from the human to holograms, h
arT , provided

by the AR headset, (e) the poses of holograms can be expressed in the robot’s coordinate. Via VPT1, the robot estimates the utility/cost
of a human agent to interact with a particular hologram: the yellow, light blue, and dark blue regions indicate where AR holograms are
directly seen by a human agent, seen after changing view angles, and occluded, respectively. (f) The system also endows the robot the
ability to manipulate the augmented holograms and update the shared perception, enabling more seamless HRI in AR.

We develop a prototype system using a Microsoft Hololens
and TurtleBot2, and demonstrates the efficacy of the shared
AR workspace in a case study of a resource collection game.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system setup and details some critical
system components. The two essential functions, shared
perception and shared manipulation of the proposed shared
AR workspace, are described in Section III. Section IV
demonstrates the efficacy of the proposed system by a case
study, and Section V concludes the paper with discussions
on some related fields the system could potentially promote.

II. SYSTEM SETUP

In this section, we describe the prototype system that
demonstrates the concept of the shared AR workspace;
Fig. 2 depicts the system architecture. Our prototype system
assumes (i) a human agent wearing an AR device and (ii)
a robot with perception sensors; however, the system should
be able to scale up to multi-human, multi-robot settings.

Robot Platform: We choose TurtleBot2 mobile robot
with a ROS compatible laptop as the robot platform; see
Fig. 2a. The robot’s perception module includes a Kinect 2
RGB-D sensor and a Hokuyo Lidar, which constructs the
environment’s 3D structure using RTAB-Map [21]. Once the
map is built, the robot only needs to localize itself within
the map by fusing visual and wheel odometry.

AR Headset: Human agents in the present study wear a
Microsoft HoloLens as the AR device; see Fig. 2b. HoloLens
headset integrates a 32-bit Intel Atom processor and runs
Windows 10 operating system onboard. Using Microsoft’s
Holographic Processing Unit, the users can realistically view
the augmented contents as holograms. The AR environment
is created using the Unity3D game engine.

Communication: Real-time interactions in the shared
AR workspace demands timely communication between
HoloLens (human agents) and robots, established using
ROS# [22]. Between the two parties, HoloLens serves as
the client, who publishes the poses of holograms, whereas
the robot serves as the server, which receives these messages

and integrates them into ROS. In addition to the perceptual
information obtained by its sensors, the robot also has access
to the 3D models of holograms so that they can be rendered
appropriately and augmented to the shared perception.

Overall Framework: The shared perception in the
shared AR workspace allows a robot to perceive virtual
holograms in three different levels with increasing depth:
(i) know the existence of holograms in the environment,
(ii) see the holograms from the robot’s current coordinate
obtained by localizing itself using physical sensors, and (iii)
infer human agent’s utility/cost of seeing holograms. Take
an example shown in Fig. 2e: human agents can directly see
objects in the yellow region as it is within their Field-of-
View (FoV), but they need to change the views to perceive
the objects marked in light blue; objects in dark blue are fully
occluded. Only having with such a multi-resolution inference
could the robot properly initiate interactions or collaboration
with the human, forming a bi-directional communication.
For instance, in Fig. 2f, the robot estimates a hologram is
occluded from the human agent’s current view and plans
and carries this occluded hologram to assist a human agent
to accomplish a task. Since the robot proactively helps the
human agent form collaborations, such a new AR paradigm
contrasts the prior one-directional communication.

III. SHARED AR WORKSPACE

Below we describe the shared perception and shared
manipulation implemented in the shared AR workspace.

A. Detection and Transformation

A key feature in the shared AR workspace is the ability
to know where the holograms are at all time, which requires
to localize human agents, robots, and holograms, and con-
struct transformations among them. Using an AR headset,
the human agent’s location is directly obtained. Given the
corresponding transformations between a human agent and
a hologram i, h

i T , the AR headset with the human agent’s
egocentric view can render the holograms.



Fig. 3: The cost of a human agent seeing an object is defined
by visibility/occlusion and the angle between two vectors—her
current facing direction and the looking direction of an object.
Suppose she is facing to the doorknob (green arrow), the cost to
see the clock is higher than seeing the sprayer as the angle β is
larger than α. Although the angle γ to see the plant under the desk
is smaller than β, the plant is currently occluded from the human
agent’s view, resulting in a higher cost despite a smaller angle.

By estimating the human pose from a single RGB-D
image [23], the robot establishes a transformation to the
human agent r

hT ; Fig. 2c shows one example. Specifically,
the frame of a human agent is attached to the head, whose x
axis is aligned with the human face’s orientation estimated
by three key points—two eyes and the neck. When the
human agent is partially or completely outside of the robot’s
FoV, the frame of the human agent is directly estimated by
leveraging the visual odometry provided by the Hololens.

By combining the above two transformations, the trans-
formations from the robot to a hologram can be computed
by r

iT “
r
h Th

i T . The transformations and the coordination of
human agents, robots, and virtual holograms are represented
in the same coordinate for easy retrieval by the robot.

B. Augmenting Holograms

Only knowing the existence of holograms is insufficient;
the robot ought to “see” the holograms in a way that can be
naturally processed for its internal modules (e.g., planning,
reconstruction). We design a rendering schema to “augment”
holograms to the robot and incorporate them into the robot’s
ROS data messages, such as 3D point clouds and 2D images.

3D Point Clouds: The holograms rendered for human
agents are stored in a mesh format. To render them in 3D
for robots, we use a sampling-based method [24] to convert
holograms to point clouds. With the established transforma-
tions, these holograms are augmented to the robot’s point
clouds input with both position and color information; see
Fig. 5a for examples of rendered holograms for the robot.

2D Image Projection: We render the holograms by
projecting them onto the robot’s received images. Following
a general rendering pipeline [25], we retrieve the hologram’s
coordinate Pc with respect to camera frame by the estab-
lished transformation r

iT and calculate the 2D pixel position
Ps “Mp ˆ Pc, given the camera’s intrinsic matrix Mp.

C. Visual Perspective Taking

Simply “knowing” and “seeing” holograms would not
be sufficient for a robot to help the human agent in the
shared AR workspace proactively. Instead, to collaborate,
plan, and execute properly, the robot would need to possess
the ability to infer whether others can see an object. Such
an ability to attribute others’ perspective is known as Level
1 Visual Perspective Taking (VPT1) [26], [27]. Specifically,
we hope to endow the robot in the shared AR workspace
with capabilities of inferring (i) whether the human agent
can see certain objects, and (ii) how difficult it is.

VPT1 of a robot is devised and implemented at both
the object level and scene level. At the object level, we
define the human agent’s cost to see an object as a function
proportional to the angle between the human agent’s current
facing direction and looking direction of the object; see
an illustration in Fig. 3. The facing direction is jointly
determined by the pose detection from the robot’s view and
the IMU embedded in HoloLens. The system also accounts
for the visibility of objects as they may be occluded by
other real/virtual objects in the environment. To identify an
occluded object, multiple virtual rays are emitted from AR
headset’s FoV to the points in a standard plane whose pose
would be updated along with the human agent’s pose. The
object would be identified as occluded if any of those rays
intersect with (i) other holograms whose poses are known in
the system, or (ii) real objects or structures whose surfaces
are detected by HoloLens’s spatial mapping.

At the scene level, we categorize the augmented envi-
ronment into three regions: (i) Focusing region, highlighted
in yellow in Fig. 2e, is considered within the human’s
FoV excluding occluded regions, determined by the FoV
of HoloLens—a 30˝ by 17.5˝ area centered at the human’s
eye. (ii) Transition region, highlighted in light blue, does not
directly appear in the human’s FoV, but it can be perceived
with minimal efforts (e.g., by turning head). (iii) Blocked
region, highlighted in the dark blue, is occluded and cannot
be seen by merely rotating view angles; the human agent
has to traverse the space with large body movements, e.g.,
spaces under tables are typical Blocked regions.

D. Interacting with Holograms

By “seeing,” “knowing,” and even “inferring” human
agents about holograms in the shared AR workspace, the
robot could subsequently plan and manipulate these holo-
grams as an active user in the very same way as a human
agent does. However, the holograms are not yet tangible for
the robot to “interact.” In our prototype system, we devise a
simple rule-based algorithm to determine the conditions to
be triggered for a robot to interact with holograms.

Fig. 4 illustrates the core idea. After obtaining a holo-
gram’s 3D mesh, the algorithm fits a circumscribed sphere
to the mesh and to itself with 20% enlargement. Once the
robot’s sphere is sufficiently close to the hologram’s (i.e.,
there is an intersection between two spheres), it triggers
a manipulation mode, and the hologram is attached to the
robot and move together. The movements are also synced in
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Fig. 4: Interactions with holograms. When approaching the holo-
gram, the robot can manipulate a hologram and carry it together if
there exists an intersection between their footprints, which triggers
the interaction into a manipulation mode.

the shared perception to the human agent in real-time; see
Fig. 2f. Since the present study adopts a ground mobile robot,
we project the spheres to circles on the floor plane to simplify
the intersection check. More sophisticated interactions, such
as a mobile manipulator grasping a hologram in 3D space,
is achievable using standard collision checking methods.

E. Planning

The last component of the system is the planner. In fact,
the shared AR workspace poses no constraints on task and
motion planning algorithms; the decision should be made
mainly based on robot platforms (e.g., ground mobile robot,
mobile manipulator, humanoid) and executed tasks (e.g.,
HRI, navigation, prediction) during the interactions; see the
next section for the planning schema adopted in this paper.

IV. EXPERIMENT

A. Experimental Setup

We design a resource collection game in the shared AR
workspace to demonstrate the efficacy of the system. Fig. 5a
depicts the environment. Six holograms, rendered as point
clouds and highlighted in circles with zoomed-in views, are
placed around the human agent (marked by a red skeleton at
the center of the room), whose facing direction is indicated
in yellow. Some holograms can be easily seen, whereas
others are harder due to their tricky locations in 3D or
occlusion (e.g., object 6). A human agent’s task is to collect
all holograms and move them to the table as fast as possible.
The robot stationed in the green dot would help the human
in collecting the resources.

As described in Section III-C, the robot first estimates the
cost for a human agent to see the holograms and whether
they are occluded; the result is shown in Fig. 5b. In our
prototype system, the robot prioritizes to help the occluded
holograms and then switch to the one with the highest cost.
In future, it is possible to integrate prediction models (e.g.,
[28], [29], [30]) that anticipate human behaviors.

B. Qualitative Results

Intuitively, we should see a better overall performance
during HRI via shared AR workspace due to its shared
perception and manipulation that enables a robot to help the
human agent for task completion collaboratively proactively.

Fig. 6 gives an example of a complete process, demon-
strating a natural interaction between the human agent and
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Fig. 5: Environment and estimated costs. (a) The experimental
environment rendered as point clouds from the robot’s view. The
red skeleton is the detected human pose, the yellow area the human
facing direction, and the green dot the robot’s initial position. (b)
Human agent’s cost of seeing holograms with object 6 occluded.

the robot to accomplish a given task collaboratively. The top
row shows the human agent’s egocentric views through the
Hololens that overlays the holograms to the image captured
by its PV camera. The middle row is a sequence of the
interactions between the robot and holograms from a third-
person view. The bottom row reveals the robot’s knowledge
of the workspace and its plans. In this particular trial, the
human agent first collected the roman tomato and the bottle
as they appear to have a lower cost. In parallel, the robot
collaboratively carries holograms—the occluded cabbage and
the tomato with the highest cost—to the human agent.

C. Quantitative Results

We conduct a pilot study to evaluate shared AR workspace
quantitatively. Twenty participants were recruited to assess
the robot performance in a between-subject setting (N “ 10
for each group). The participants in the Human group are
asked to find and collect all six holograms by themselves.
The participants in the Human+Robot group use the shared
AR workspace system, where the robot proactively helps
the participants to accomplish the task. Each subject has
no familiarization with the physical environments, but they
received simple training about how to use the AR device
right before the experiments started.

Fig. 7 compares the results between the two groups. The
difference of the completion time is statistically significant;
tp19q “ 1.0, p “ 0.028. Participants with robot’s help
take significantly less time (mean: 135 seconds, median: 134
seconds) to complete the given task. In contrast, the baseline
group requires much more time with a larger variance (mean:
202 seconds, median: 206 seconds). This finding indicates a
new role that a robot can play in the shared AR workspace by
assisting human agents to accomplish a task collaboratively.
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(b) Third-person view of robot motions.
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Fig. 6: Qualitative results. Qualitative experimental results in the resource collecting game. The robot helps to collect holograms (object
5 and 6 in Fig. 5b) that are difficult for the human agent to see.
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Fig. 7: Quantitative results. Box plot of all participants’ collection
time in two different groups; the dots in the plot are the individ-
ual data points. Subjects helped by the robot in the shared AR
workspace are significantly more efficient in task completion.

V. RELATED WORK AND DISCUSSION

We design, implement, and demonstrate how the shared
perception and manipulation provided by the shared AR
workspace improve HRI with a proof-of-concept system
using a resource collection game. In future, more complex
and diverse HRI studies are needed to further examine and
benifits and limits of the shared AR workspace by (i) varying
the degree of human agent’s and/or robot’s perception and
manipulation capability; e.g., only the robot can see and act
on holograms while the human agent cannot, as an opposite
to current AR setup, and (ii) introducing virtual components
to avoid certain costly and dangerous setups in the physical
world. Below, we briefly review related work and scenarios
that shared AR workspace could potentially facilitate.

The idea of creating a shared workspace for human
agents and robots has been implemented in VR, where they
can re-target views to each other to interact with virtual
objects [31]. Prior studies have demonstrated advantages
in teleoperation [32] and robot policy learning [33]. More
recently, a system [34], [35] that allows multiple users to in-
teract with the same AR elements is devised. In comparison,
the shared AR workspace deals with the perceptual noise
in the physical world and promotes robots to become active
users in AR to work on tasks with humans collaboratively.

In recent years, Human-Robot Interaction and Collab-
oration have been developing with increasing breadth and
depth. One core challenge of the field is to seek how the
robot or the human should act to promote understanding and
trust, usually in terms of predictability, with the other. From a
robot’s angle, it models humans by inferring goals [36], [37],
tracking mental states [38], [39], predicting actions [40],
and recognizing intention and attention [41], [42]. From
a human agent’s perspective, the robot needs to be more
expressed [43], to promote human trust [44], to assist prop-
erly [45], [46], and to generate proper explanations of its
behavior [44]. We believe the proposed shared AR workspace
is an ideal platform for evaluating and benchmarking existing
and new algorithms and models.

Human-robot teaming [47], [48] poses new challenges
to computational models aiming to endow robots with the
Theory of Mind abilities, which are usually in a dyadic sce-
nario [49]. With the adaptability to multi-party settings and
the fine-grained controllability of users’ situational aware-
ness, the proposed shared AR workspace offers a unique
solution to test the robot’s ability to maintain belief, inten-
tion, and desires [50], [51], [39] of other agents. Crucially,
the robot would play the role of a collaborator to help and as
a moderator [52] to accommodate each agent. The ultimate
goal is to forge a shared agency [53], [54] between robots
and human agents for seamless collaboration.

How human’s cognition emerges and develops is a funda-
mental question. Researchers have looked into the behaviors
of primates’ collaboration and communication [55], imita-
tion [56], and crows’ high-level reasoning [57], planning and
tool making [58] for deeper insights. Cognitive robots are
still in their infancy in developing such advanced cognitive
capabilities, despite various research efforts [59], [60]. These
experimental settings can be relatively easier to replicate in
the shared AR workspace, which would open up new avenues
to study how a robot would emerge similar behaviors.
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